• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 20
  • 19
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A VLBI polarisation study of 43 GHZ SiO masers towards VY CMA

Richter, Laura January 2006 (has links)
This thesis reports the calibration, imaging and analysis of one epoch of VLBI observations of the v (italics) = J (italics) = 1-0 transition of SiO towards VY CMa. Full polarisation information was recorded, allowing high resolution synthesis maps of each of the four Stokes parameters to be produced. A total of 81 maser components were extracted from the total intensity map, each approximately 1 mas in size. The emission spans approximately 100 x 80 mas in right ascension and declination and is concentrated to the east. The maser component positions were fitted to a ring of radius ~ 3.2R₊ (italics), or 7.2 x 1O¹⁴ cm for a stellar distance of 1.5 kpc. If the stellar position is assumed to be the centre of this ring then almost all of the maser components fall within the inner dust shell radius, which is at ~ 5R (italics)ϰ All of the maser components fall between 1.5R (italics)ϰ and 6R (italics)ϰ. A velocity gradient with position angle was observed in the sparsely filled western region of the maser ring. If interpreted as evidence of shell rotation, this gradient implies a rotational velocity of v (italics) rot (subscirpt) sin i (italics) = 18 km.s⁻¹. The fractional circular and linear polarisations of the maser spots were derived from the Stokes parameter maps. The mean fractional circular polarisation of the masers components was ~ 2 percent and the median fractional linear polarisation was ~ 6 percent, with many spots displaying over ~ 30 percent linear polarisation. The mean circular polarisation implies a magnetic field of ~ 4 G in the SiO maser region if the polarisation is due to Zeeman splitting. Two maser components display a rotation of linear polarisation position angle with velocity, possibly implying a connection between the magnetic field and the velocity field variations in the region of these components.
12

Integration of Long Baseline Positioning System And Vehicle Dynamic Model

Chiou, Ji-Wen 04 August 2011 (has links)
Precise positioning is crucial for the success of navigation of underwater vehicles. At present, different instruments and methods are available for underwater positioning but few of them are reliable for three-dimensional position sensing of underwater vehicles. Long baseline (LBL) positioning is the standard method for three-dimensional underwater navigation. However, the accuracy of LBL positioning suffers from its own drawback of relatively low update rates. To improve the accuracy in positioning an underwater vehicle, integration of additional sensing measurements in a LBL navigation system is necessary. In this study, numerical simulation and experiment are conducted to investigate the effect of interrogate rate on the accuracy of LBL positioning. Numerical and experimental results show that the longer the interrogate rate, the greater the LBL positioning error. In addition, no reply from a transponder to transceiver interrogation is another major error source in LBL positioning. The experimental result also shows that the accuracy of LBL positioning can be significantly improved by the integration of velocity sensing. Therefore, based on Kalman filter, this study integrates a LBL system with vehicle dynamic model to improve the accuracy of positioning an underwater vehicle. For conducting the positioning experiments, a remotely operated vehicle (ROV) with dedicated Graphic User Interface (GUI) is designed, constructed, and tested. To have a precise motion simulation of ROV, a nonlinear dynamic model of ROV with six degrees of freedom (DOF) is used and its hydrodynamic parameters are identified. Finally, the positioning experiment is run by maneuvering the ROV to move along an ¡§S¡¨ trajectory, and Kalman filter is adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation when the measurements of range, depth, and thruster command are available. The experimental result demonstrates the effectiveness of the integrated LBL system with the ROV dynamic model on the improvement of accuracy of positioning an underwater vehicle.
13

A VLBI study of OH masers in a proto-planetary nebula OH 0.9+1.3. /

McAlpine, Kim. January 1900 (has links)
Thesis (M.Sc. (Physics & Electronics)) - Rhodes University, 2008.
14

A VLBI study of OH masers in a proto-planetary nebula OH 0.9+1.3

McAlpine, Kim January 2008 (has links)
This thesis reports the calibration, imaging and analysis of one epoch of VLBA observations of the 1612 MHz OH maser emission from the protoplanetary nebula OH 0.9+1.3. These are the first polarisation VLBI observations of this source and the spatial morphology of the OH emission is resolved on this scale. Proto-planetary nebulae represent the transition phase in the evolution of stars between the asymptotic giant branch (AGB) phase and their emergence as planetary nebulae. A long-standing astronomical question is how the predominantly spherical circumstellar envelopes of AGB stars evolve into the bipolar and axisymmetric structures that are commonly observed in planetary nebula. Proto-planetary nebulae offer a unique opportunity to study this transformation process. The high-resolution VLBI maps produced in this thesis were used to investigate the morphology and kinematics of OH 0.9+1.3 with a view to gaining insight into the development of asymmetries in the circumstellar material. The OH maser emission of OH 0.9+1.3 has a double-peaked profile with one peak blue-shifted and the other red-shifted with respect to the stellar velocity. The total intensity maser maps demonstrate a considerable degree of asymmetry with the blue- and red-shifted emission located in spatially distinct regions of the envelope. The blue-shifted emission is distributed preferentially along an axis at a projected position angle of » 135± ( North through East). The morphology of this source is not consistent with the standard symmetric thin-shell model and an attempt to fit the traditional OH/IR kinematic model of a simple expanding shell to the maser components was found to be unsatisfactory. No definitive evidence of a bipolar outflow was observed either. The high degree of asymmetry observed in the source is consistent with its status as a proto-planetary nebula. The source was imaged in all four Stokes parameters and the fractional linear and circular polarisations of the maser components were derived from the Stokes parameter maps. In all except one of the components the total fractional polarisation was found to be low ( < 15%). The mean fractional linear and circular polarisation were calculated to be 5.54% and 7.11% respectively. The absence of an identifiable Zeeman pair in the Stokes V map prohibited the estimation of the magnetic field in the circumstellar envelope of this source.
15

Data reduction techniques for Very Long Baseline Interferometric spectropolarimetry

Kemball, Athol James January 1993 (has links)
This thesis reports the results of an investigation into techniques for the calibration and imaging of spectral line polarization observations in Very Long Baseline Interferometry (VLBI). A review is given of the instrumental and propagation effects which need to be removed in the course of calibrating such obervations, with particular reference to their polarization dependence. The removal of amplitude and phase errors and the determination of the instrumental feed response is described. The polarization imaging of such data is discussed with particular reference to the case of poorly sampled cross-polarization data. The software implementation of the algorithms within the Astronomical Image Processing System (AlPS) is discussed and the specific case of spectral line polarization reduction for data observed using the MK3 VLBI system is considered in detail. VLBI observations at two separate epochs of the 1612 MHz OH masers towards the source IRC+ 10420 are reduced as part of this work. Spectral line polarization maps of the source structure are presented, including a discussion of source morphology and variability. The source is sigmficantly circularly polarized at VLBI resolution, but does not display appreciable linear polarization. A proper motion study of the circumstellar envelope is presented, which supports an ellipsoidal kinematic model with anisotropic radial outflow. Kinematic modelling of the measured proper motions suggests a distance to the source of ~ 3 kpc. The cirumstellar magnetic field strength in the masing regions is determined as 1-3 mG, assuming Zeeman splitting as the polarization mechanism.
16

A comparative polarimetric study of the 43 GHz and 86 GHz SiO masers toward the supergiant star VY CMa

Richter, Laura January 2012 (has links)
The aim of this thesis is to perform observational tests of SiO maser polarisation and excitation models, using component-level comparisons of multiple SiO maser transitions in the 43 GHz and 86 GHz bands at milliarcsecond resolution. These observations reqwre very long baseline interferometric imaging with very accurate polarimetric calibration. The supergiant star VY CMa was chosen as the object of this study due to its high SiO maser luminosity, many detected SiO maser lines, and intrinsic scientific interest. Two epochs of full-polarisation VLBA observations of VY CMa were performed. The Epoch 2 observations were reduced using several new data reduction methods developed as part of this work, and designed specifically to improve the accuracy of circular polarisation calibration of spectral-line VLBI observations at millimetre wavelengths. The accuracy is estimated to be better than 1% using these methods. The Epoch 2 images show a concentration of v= l and v=2 J= 1-0 SiO masers to the east and northeast of the assumed stellar position. The v=l J=2-1 masers were more evenly distributed around the star, with a notable lack of emission in the northeast. There is appreciable spatial overlap between these three lines. The nature of the overlap is generally consistent with the predictions of hydrodynamical circumstellar SiO maser simulations. Where the v=l J = 1-0 and J =2-1 features overlap, the v=l J = 2-1 emission is usually considerably weaker. This is not predicted by current hydrodynamical models, but can be explained in the context of collisional pumping in a low density environment. Six observational tests of weak-splitting maser polarisation models were performed, including intercomparisons of linear polarisation in the v=l J=1-0 and J=2-1lines, linear polarisation versus saturation level, linear polarisation versus distance from the star, circular polarisation in the v= l J = 1-0 and J=2-1 lines, circular versus linear polarisation and modeling of ~ 900 electric-vector position angle rotations. The polarisation model tests generally do not support non-Zeeman circular polarisation mechanisms. For the linear polarisation tests, the results are more consistent with models that predict similar linear polarisation across transitions. The scientific importance of these tests is described in detail and avenues for future work are described.
17

Interagency Arraying

Cox, Henry G. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1987 / Town and Country Hotel, San Diego, California / Voyager ground aperture requirements for Neptune encounter in August 1989 exceed the expected capabilities of the Jet Propulsion Laboratory's Deep Space Network (DSN) 70- and 34-meter antennas. Agreements have been consummated with the National Science Foundation to array the National Radio Astronomy Observatory's Very Large Array in New Mexico and with the Commonwealth Scientific and Industrial Research Organization's Parkes Radio Telescope in Australia with the DSN. This technique, which was demonstrated during Voyager's Uranus encounter, will provide a greater return of imaging and non-imaging science data. The arrays consist of the normal facility receiving equipment at each location, augmented by special receiving, combining, recording, and monitor and control equipment. This equipment has been designed, is being implemented, and will be operated during the Neptune encounter to effectively double the available antenna aperture over the western United States and Australia.
18

Etude de concept d'instruments cophaseur pour l'imagerie interférométrique infrarouge. Observation de binaires en interaction à très haute résolution angulaire / Study of fringe trackers concepts for astrophysical image synthesis. Study of interacting binaries with very high angular resolution.

Blind, Nicolas 03 November 2011 (has links)
Malgré sa capacité unique à discerner des détails qu'aucun instrument “classique” ne peut voir, l'interférométrie optique est fortement handicapée par l'atmosphère. Celle-ci limite drastiquement les temps de pose des interféromètres au sol et les empèche d'accumuler suffisamment de photons pour observer des sources toujours plus faibles, limitant de facto l'échantillon des astres observables. Les suiveurs de franges sont des instruments développés spécifiquement dans le but de compenser ces perturbations atmosphériques, et ainsi de repousser les limites de l'univers visible par les interféromètres optiques. Le but premier de cette thèse est d'étudier et d'améliorer ces instruments, dans le contexte des technologies actuelles et des nouvelles générations d'interféromètres combinant 4 télescopes et plus. La seconde grande partie de cette thèse s'attachera quant à elle à montrer l'intérêt de l'interférométrie optique dans l'étude des binaires en interaction, astres en mesure d'apporter des réponses à un vaste panel de champs d'étude du fait de la diversité des processus physiques en jeu en leur sein. / Despite its unique ability to discern details that a “classical” instrument cannot see, optical interferometry is still strongly handicapped by the atmosphere. It drastically limits the exposure time of ground interferometers and prevents them to accumulate enough photons to observe weak sources, limiting de facto sample of observable stars. Fringe trackers are instruments developed specifically to compensate for these atmospheric disturbances, and so push the boundaries of the universe observable with optical interferometers. The primary purpose of this thesis is to study and improve these instruments in the context of the current technologies and of the new generation of interferometers combining four telescopes and more. The second major part of this thesis will show the advantages of optical interferometry in the study of interacting binary, stars able to answer to a wide range of domains because of the diversity of physical processes involved in them.
19

Development of disk-based baseband recorders and software correlators for radio astronomy

West, Craig James, cwest@astro.swin.edu.au January 2004 (has links)
This thesis details work undertaken in the field of radio astronomy instrumentation. Specific components of the data collection and processing systems used by radio astronomers have been implemented using non-traditional approaches. Traditionally, the correlation of radio astronomy data has taken place on dedicated, specific hardware. This thesis deals with the implementation of equivalent correlators using software running on generic clusters of personal computers - the software approach to radio astronomy. Toward this end a system has been developed that records the raw telescope output onto computer hard drives, allowing easy access to the data on cluster supercomputers. Part of this thesis describes the design, construction, testing and utilisation of these data recording systems. The correlator software used to process these data on supercomputers is also fully described, including extensive tests of the software and a detailed comparison between its output and the output of an existing hardware correlator. The software correlator is shown to produce output that agrees extremely well with the hardware correlator, verifying its accuracy and performance. Finally, results of on-going scientific investigations that use the software correlators described in this thesis are outlined, illustrating the flexibility and usefulness of the software approach to radio astronomy.
20

The Self-Calibration Method for Multiple Systems at the CHARA Array

O'Brien, David P 07 May 2011 (has links)
The self-calibration method, a new interferometric technique using measurements in the K′-band (2.1 μm) at the CHARA Array, has been used to derive orbits for several spectroscopic binaries. This method uses the wide component of a hierarchical triple system to calibrate visibility measurements of the triple’s close binary system through quasi-simultaneous observations of the separated fringe packets of both. Prior to the onset of this project, the reduction of separated fringe packet data had never included the goal of deriving visibilities for both fringe packets, so new data reduction software has been written. Visibilities obtained with separated fringe packet data for the target close binary are run through both Monte Carlo simulations and grid search programs in order to determine the best-fit orbital elements of the close binary. Several targets, with spectral types ranging from O to G and luminosity classesfrom III to V, have been observed in this fashion, and orbits have been derived for the close binaries of eight targets (V819 Her B, Kappa Peg B, Eta Vir A, Eta Ori Aab, 55 UMa A, 13 Ceti A, CHARA 96 Ab, HD 129132 Aa). The derivation of an orbit has allowed for the calculation of the masses of the components in these systems. The magnitude differences between the components can also be derived, provided that the components of the close binary have a magnitude difference of Delta K < 2.5 (CHARA’s limit). Derivation of the orbit also allows for the calculation of the mutual inclination (Phi), which is the angle between the planes of the wide and close orbits. According to data from the Multiple Star Catalog, there are 34 triple systems other than the 8 studied here for which the wide and close systems both have visual orbits. Early formation scenarios for multiple systems predict coplanarity (Phi < 15 degrees), but only 6 of these 42 systems are possibly coplanar. This tendency against coplanarity may suggest that the capture method of multiple system formation is more important than previously believed.

Page generated in 0.1473 seconds