Spelling suggestions: "subject:"longbranch attraction"" "subject:"nonabranch attraction""
1 |
Evolution of transitional forms: behavior, colony dynamics, and phylogenetics of social wasps (hymenoptera: vespidae)Pickett, Kurt Milton 23 January 2004 (has links)
No description available.
|
2 |
A phylogenomics approach to resolving fungal evolution, and phylogenetic method developmentLiu, Yu 12 1900 (has links)
Bien que les champignons soient régulièrement utilisés comme modèle d'étude des systèmes eucaryotes, leurs relations phylogénétiques soulèvent encore des questions controversées. Parmi celles-ci, la classification des zygomycètes reste inconsistante. Ils sont potentiellement paraphylétiques, i.e. regroupent de lignées fongiques non directement affiliées. La position phylogénétique du genre Schizosaccharomyces est aussi controversée: appartient-il aux Taphrinomycotina (précédemment connus comme archiascomycetes) comme prédit par l'analyse de gènes nucléaires, ou est-il plutôt relié aux Saccharomycotina (levures bourgeonnantes) tel que le suggère la phylogénie mitochondriale? Une autre question concerne la position phylogénétique des nucléariides, un groupe d'eucaryotes amiboïdes que l'on suppose étroitement relié aux champignons. Des analyses multi-gènes réalisées antérieurement n'ont pu conclure, étant donné le choix d'un nombre réduit de taxons et l'utilisation de six gènes nucléaires seulement.
Nous avons abordé ces questions par le biais d'inférences phylogénétiques et tests statistiques appliqués à des assemblages de données phylogénomiques nucléaires et mitochondriales. D'après nos résultats, les zygomycètes sont paraphylétiques (Chapitre 2) bien que le signal phylogénétique issu du jeu de données mitochondriales disponibles est insuffisant pour résoudre l'ordre de cet embranchement avec une confiance statistique significative. Dans le Chapitre 3, nous montrons à l'aide d'un jeu de données nucléaires important (plus de cent protéines) et avec supports statistiques concluants, que le genre Schizosaccharomyces appartient aux Taphrinomycotina. De plus, nous démontrons que le regroupement conflictuel des Schizosaccharomyces avec les Saccharomycotina, venant des données mitochondriales, est le résultat d'un type d'erreur phylogénétique connu: l'attraction des longues branches (ALB), un artéfact menant au regroupement
d'espèces dont le taux d'évolution rapide n'est pas représentatif de leur véritable position dans l'arbre phylogénétique. Dans le Chapitre 4, en utilisant encore un important jeu de données nucléaires, nous démontrons avec support statistique significatif que les nucleariides constituent le groupe lié de plus près aux champignons. Nous confirmons aussi la paraphylie des zygomycètes traditionnels tel que suggéré précédemment, avec support statistique significatif, bien que ne pouvant placer tous les membres du groupe avec confiance. Nos résultats remettent en cause des aspects d'une récente reclassification taxonomique des zygomycètes et de leurs voisins, les chytridiomycètes.
Contrer ou minimiser les artéfacts phylogénétiques telle l'attraction des longues branches (ALB) constitue une question récurrente majeure. Dans ce sens, nous avons développé une nouvelle méthode (Chapitre 5) qui identifie et élimine dans une séquence les sites présentant une grande variation du taux d'évolution (sites fortement hétérotaches - sites HH); ces sites sont connus comme contribuant significativement au phénomène d'ALB. Notre méthode est basée sur un test de rapport de vraisemblance (likelihood ratio test, LRT). Deux jeux de données publiés précédemment sont utilisés pour démontrer que le retrait graduel des sites HH chez les espèces à évolution accélérée (sensibles à l'ALB) augmente significativement le support pour la topologie « vraie » attendue, et ce, de façon plus efficace comparée à d'autres méthodes publiées de retrait de sites de séquences. Néanmoins, et de façon générale, la manipulation de
données préalable à l'analyse est loin d’être idéale. Les développements futurs devront viser l'intégration de l'identification et la pondération des sites HH au processus d'inférence phylogénétique lui-même. / Despite the popularity of fungi as eukaryotic model systems, several questions on their phylogenetic relationships continue to be controversial. These include the classification of zygomycetes that are potentially paraphyletic, i.e. a combination of several not directly related fungal lineages. The phylogenetic position of Schizosaccharomyces species has also been controversial: do they belong to Taphrinomycotina (previously known as archiascomycetes) as predicted by analyses with nuclear genes, or are they instead related to Saccharomycotina (budding yeast) as in mitochondrial phylogenies? Another question concerns the precise phylogenetic position of nucleariids, a group of amoeboid eukaryotes that are believed to be close relatives of Fungi. Previously conducted multi-gene analyses have been inconclusive, because of limited taxon sampling and the use of only six nuclear genes.
We have addressed these issues by assembling phylogenomic nuclear and mitochondrial datasets for phylogenetic inference and statistical testing. According to our results zygomycetes appear to be paraphyletic (Chapter 2), but the phylogenetic signal in the available mitochondrial dataset is insufficient for resolving their branching order with statistical confidence. In Chapter 3 we show with a large nuclear dataset (more than 100 proteins) and conclusive supports that Schizosaccharomyces species are part of Taphrinomycotina. We further demonstrate that the conflicting grouping of Schizosaccharomyces with budding yeasts, obtained with mitochondrial sequences, results from a phylogenetic error known as long-branch attraction (LBA, a common artifact that leads to the regrouping of species with high evolutionary rates irrespective of their true phylogenetic positions). In Chapter 4, using again a large nuclear dataset we demonstrate with significant
statistical support that nucleariids are the closest known relatives of Fungi. We also confirm paraphyly of traditional zygomycetes as previously suggested, with significant support, but without placing all members of this group with confidence. Our results question aspects of a recent taxonomical reclassification of zygomycetes and their chytridiomycete neighbors (a group of zoospore-producing Fungi).
Overcoming or minimizing phylogenetic artifacts such as LBA has been among our most recurring questions. We have therefore developed a new method (Chapter 5) that identifies and eliminates sequence sites with highly uneven evolutionary rates (highly heterotachous sites, or HH sites) that are known to contribute significantly to LBA. Our method is based on a likelihood ratio test (LRT). Two previously published datasets are used to demonstrate that gradual removal of HH sites in fast-evolving species (suspected for LBA) significantly increases the support for the expected ‘true’ topology, in a more effective way than comparable, published methods of sequence site removal. Yet in general, data manipulation prior to analysis is far from ideal. Future development should aim at integration of HH site identification and weighting into the phylogenetic inference process itself.
|
3 |
Taxonomy, phylogeny, and secondary sexual character evolution of diving beetles, focusing on the genus AciliusBergsten, Johannes January 2005 (has links)
<p>Sexual conflict can lead to antagonistic coevolution between the sexes, but empirical examples are few. In this thesis secondary sexual characters in diving beetles are interpreted in the light of sexual conflict theory. Whether the male tarsal suction cups and female dorsal modifications are involved in a coevolutionary arms race is tested in two ways. First eight populations of a species with dimorphic females that varied in frequency of the morphs were investigated and male tarsal characteristics quantified. The frequency of female morphs is shown to be significantly correlated to the average number and size of male tarsal suction cups in the population, a prediction of the arms race hypothesis. Second, the hypothesis is tested in a phylogenetic perspective by optimizing the secondary sexual characters on a phylogeny. A full taxonomic revision of the genus <i>Acilius</i> is presented, including new synonyms, lectotype designations, geographic distributions based on more than five thousand examined museum specimens and the description of a new species from northeastern USA. Specimens of all species (except one possibly extinct that failed to be found in Yunnan, China 2000), were field collected between 2000 and 2003 in Sardinia, Sweden, Russia, Honshu and Hokkaido in Japan, New York, Maryland, California and Alberta. Three genes (CO1, H3 and Wingless) were sequenced from the fresh material as well as scoring a morphological character matrix all of which was used to derive a robust and complete hypothesis of the phylogenetic relationship in the group. The phylogeny was derived using Bayesian phylogenetics with Markov Chain Monte Carlo techniques and received a posterior probability of 0.85. Changes in male and female characters turned out to be perfectly correlated across the phylogeny, providing one of the best empirical examples to date of an antagonistic arms race between the sexes in a group of organisms. Finally, a review of a pitfall to phylogenetic analysis known under the name long-branch attraction (LBA), is provided. The problem is well known theoretically but has been questioned to occur in real data, and LBA has been in the core center of the hard debate between parsimony and likelihood advocates since different inference methods vary in sensitivity to the phenomenon. Most important conclusions from the review are; LBA is very common in real data, and is most often introduced with the inclusion of outgroups that almost always provide long branches, pulling down long terminal ingroup branches towards the root. Therefore it is recommended to always run analyses with and without outgroups. Taxon sampling is very important to avoid the pitfall as well as including different kind of data, especially morphological data, i.e. many LBA-affected conclusions have recently been reached by analyses of few taxa with complete genomes. Long-branch extraction (incl. outgroup exclusion), methodological disconcordance (parsimony vs modelbased), separate partition analyses (morphology vs molecules, codon positions, genes, etc), parametric simulation (incl. random outgroups), and split graphs are available relevant methods for the detection of LBA that should be used in combinations, because none alone is enough to stipulate LBA.</p>
|
4 |
Taxonomy, phylogeny, and secondary sexual character evolution of diving beetles, focusing on the genus AciliusBergsten, Johannes January 2005 (has links)
Sexual conflict can lead to antagonistic coevolution between the sexes, but empirical examples are few. In this thesis secondary sexual characters in diving beetles are interpreted in the light of sexual conflict theory. Whether the male tarsal suction cups and female dorsal modifications are involved in a coevolutionary arms race is tested in two ways. First eight populations of a species with dimorphic females that varied in frequency of the morphs were investigated and male tarsal characteristics quantified. The frequency of female morphs is shown to be significantly correlated to the average number and size of male tarsal suction cups in the population, a prediction of the arms race hypothesis. Second, the hypothesis is tested in a phylogenetic perspective by optimizing the secondary sexual characters on a phylogeny. A full taxonomic revision of the genus Acilius is presented, including new synonyms, lectotype designations, geographic distributions based on more than five thousand examined museum specimens and the description of a new species from northeastern USA. Specimens of all species (except one possibly extinct that failed to be found in Yunnan, China 2000), were field collected between 2000 and 2003 in Sardinia, Sweden, Russia, Honshu and Hokkaido in Japan, New York, Maryland, California and Alberta. Three genes (CO1, H3 and Wingless) were sequenced from the fresh material as well as scoring a morphological character matrix all of which was used to derive a robust and complete hypothesis of the phylogenetic relationship in the group. The phylogeny was derived using Bayesian phylogenetics with Markov Chain Monte Carlo techniques and received a posterior probability of 0.85. Changes in male and female characters turned out to be perfectly correlated across the phylogeny, providing one of the best empirical examples to date of an antagonistic arms race between the sexes in a group of organisms. Finally, a review of a pitfall to phylogenetic analysis known under the name long-branch attraction (LBA), is provided. The problem is well known theoretically but has been questioned to occur in real data, and LBA has been in the core center of the hard debate between parsimony and likelihood advocates since different inference methods vary in sensitivity to the phenomenon. Most important conclusions from the review are; LBA is very common in real data, and is most often introduced with the inclusion of outgroups that almost always provide long branches, pulling down long terminal ingroup branches towards the root. Therefore it is recommended to always run analyses with and without outgroups. Taxon sampling is very important to avoid the pitfall as well as including different kind of data, especially morphological data, i.e. many LBA-affected conclusions have recently been reached by analyses of few taxa with complete genomes. Long-branch extraction (incl. outgroup exclusion), methodological disconcordance (parsimony vs modelbased), separate partition analyses (morphology vs molecules, codon positions, genes, etc), parametric simulation (incl. random outgroups), and split graphs are available relevant methods for the detection of LBA that should be used in combinations, because none alone is enough to stipulate LBA.
|
5 |
A phylogenomics approach to resolving fungal evolution, and phylogenetic method developmentLiu, Yu 12 1900 (has links)
Bien que les champignons soient régulièrement utilisés comme modèle d'étude des systèmes eucaryotes, leurs relations phylogénétiques soulèvent encore des questions controversées. Parmi celles-ci, la classification des zygomycètes reste inconsistante. Ils sont potentiellement paraphylétiques, i.e. regroupent de lignées fongiques non directement affiliées. La position phylogénétique du genre Schizosaccharomyces est aussi controversée: appartient-il aux Taphrinomycotina (précédemment connus comme archiascomycetes) comme prédit par l'analyse de gènes nucléaires, ou est-il plutôt relié aux Saccharomycotina (levures bourgeonnantes) tel que le suggère la phylogénie mitochondriale? Une autre question concerne la position phylogénétique des nucléariides, un groupe d'eucaryotes amiboïdes que l'on suppose étroitement relié aux champignons. Des analyses multi-gènes réalisées antérieurement n'ont pu conclure, étant donné le choix d'un nombre réduit de taxons et l'utilisation de six gènes nucléaires seulement.
Nous avons abordé ces questions par le biais d'inférences phylogénétiques et tests statistiques appliqués à des assemblages de données phylogénomiques nucléaires et mitochondriales. D'après nos résultats, les zygomycètes sont paraphylétiques (Chapitre 2) bien que le signal phylogénétique issu du jeu de données mitochondriales disponibles est insuffisant pour résoudre l'ordre de cet embranchement avec une confiance statistique significative. Dans le Chapitre 3, nous montrons à l'aide d'un jeu de données nucléaires important (plus de cent protéines) et avec supports statistiques concluants, que le genre Schizosaccharomyces appartient aux Taphrinomycotina. De plus, nous démontrons que le regroupement conflictuel des Schizosaccharomyces avec les Saccharomycotina, venant des données mitochondriales, est le résultat d'un type d'erreur phylogénétique connu: l'attraction des longues branches (ALB), un artéfact menant au regroupement
d'espèces dont le taux d'évolution rapide n'est pas représentatif de leur véritable position dans l'arbre phylogénétique. Dans le Chapitre 4, en utilisant encore un important jeu de données nucléaires, nous démontrons avec support statistique significatif que les nucleariides constituent le groupe lié de plus près aux champignons. Nous confirmons aussi la paraphylie des zygomycètes traditionnels tel que suggéré précédemment, avec support statistique significatif, bien que ne pouvant placer tous les membres du groupe avec confiance. Nos résultats remettent en cause des aspects d'une récente reclassification taxonomique des zygomycètes et de leurs voisins, les chytridiomycètes.
Contrer ou minimiser les artéfacts phylogénétiques telle l'attraction des longues branches (ALB) constitue une question récurrente majeure. Dans ce sens, nous avons développé une nouvelle méthode (Chapitre 5) qui identifie et élimine dans une séquence les sites présentant une grande variation du taux d'évolution (sites fortement hétérotaches - sites HH); ces sites sont connus comme contribuant significativement au phénomène d'ALB. Notre méthode est basée sur un test de rapport de vraisemblance (likelihood ratio test, LRT). Deux jeux de données publiés précédemment sont utilisés pour démontrer que le retrait graduel des sites HH chez les espèces à évolution accélérée (sensibles à l'ALB) augmente significativement le support pour la topologie « vraie » attendue, et ce, de façon plus efficace comparée à d'autres méthodes publiées de retrait de sites de séquences. Néanmoins, et de façon générale, la manipulation de
données préalable à l'analyse est loin d’être idéale. Les développements futurs devront viser l'intégration de l'identification et la pondération des sites HH au processus d'inférence phylogénétique lui-même. / Despite the popularity of fungi as eukaryotic model systems, several questions on their phylogenetic relationships continue to be controversial. These include the classification of zygomycetes that are potentially paraphyletic, i.e. a combination of several not directly related fungal lineages. The phylogenetic position of Schizosaccharomyces species has also been controversial: do they belong to Taphrinomycotina (previously known as archiascomycetes) as predicted by analyses with nuclear genes, or are they instead related to Saccharomycotina (budding yeast) as in mitochondrial phylogenies? Another question concerns the precise phylogenetic position of nucleariids, a group of amoeboid eukaryotes that are believed to be close relatives of Fungi. Previously conducted multi-gene analyses have been inconclusive, because of limited taxon sampling and the use of only six nuclear genes.
We have addressed these issues by assembling phylogenomic nuclear and mitochondrial datasets for phylogenetic inference and statistical testing. According to our results zygomycetes appear to be paraphyletic (Chapter 2), but the phylogenetic signal in the available mitochondrial dataset is insufficient for resolving their branching order with statistical confidence. In Chapter 3 we show with a large nuclear dataset (more than 100 proteins) and conclusive supports that Schizosaccharomyces species are part of Taphrinomycotina. We further demonstrate that the conflicting grouping of Schizosaccharomyces with budding yeasts, obtained with mitochondrial sequences, results from a phylogenetic error known as long-branch attraction (LBA, a common artifact that leads to the regrouping of species with high evolutionary rates irrespective of their true phylogenetic positions). In Chapter 4, using again a large nuclear dataset we demonstrate with significant
statistical support that nucleariids are the closest known relatives of Fungi. We also confirm paraphyly of traditional zygomycetes as previously suggested, with significant support, but without placing all members of this group with confidence. Our results question aspects of a recent taxonomical reclassification of zygomycetes and their chytridiomycete neighbors (a group of zoospore-producing Fungi).
Overcoming or minimizing phylogenetic artifacts such as LBA has been among our most recurring questions. We have therefore developed a new method (Chapter 5) that identifies and eliminates sequence sites with highly uneven evolutionary rates (highly heterotachous sites, or HH sites) that are known to contribute significantly to LBA. Our method is based on a likelihood ratio test (LRT). Two previously published datasets are used to demonstrate that gradual removal of HH sites in fast-evolving species (suspected for LBA) significantly increases the support for the expected ‘true’ topology, in a more effective way than comparable, published methods of sequence site removal. Yet in general, data manipulation prior to analysis is far from ideal. Future development should aim at integration of HH site identification and weighting into the phylogenetic inference process itself.
|
6 |
Lineage specific evolution and phylogenetic analysis : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomathematics at Massey University, Palmerston North, New ZealandGrievink, Liat Shavit January 2009 (has links)
Phylogenetic models generally assume a homogeneous, time reversible, stationary process. These assumptions are often violated by the real, far more complex, evolutionary process. This thesis is centered on non-homogeneous, lineage-specific, properties of molecular sequences. It consist several related but independent studies. LineageSpecificSeqgen, an extension to the Seq-Gen program, which allows generation of sequences with changes in the proportion of variable sites, is introduced. This program is then used in a simulation study showing that changes in the proportion of variable sites can hinder tree estimation accuracy, and that tree reconstruction under the best-fit model chosen using a relative test can result in a wrong tree. In this case, the less commonly used absolute model-fit was a better predictor of tree estimation accuracy. This study found that increased taxon sampling of lineages that have undergone a change in the proportion of variable sites was critical for accurate tree reconstruction and that, in contrast to some earlier findings, the accuracy of maximum parsimony is adversely affected by such changes. This thesis also addresses the well-known long-branch attraction artifact. A nonparametric bootstrap test to identify changes in the substitution process is introduced, validated, and applied to the case of Microsporidia, a highly reduced intracellular parasite. Microsporidia was first thought to be an early branching eukaryote, but is now believed to be sister to, or included within, fungi. Its apparent basal eukaryote position is considered a result of long-branch attraction due to an elevated evolutionary rate in the microsporidian lineage. This study shows that long-branch estimates and basal positioning of Microsporidia both correlate with increased proportions of radical substitutions in the microsporidian lineage. In simulated data, such increased proportions of radical substitutions leads to erroneous long-branch estimates. These results suggest that the long microsporidian branch is likely to be a result of an increased proportion of radical substitutions on that branch, rather than increased evolutionary rate per se. The focus of the last study is the intriguing case of Mesostigma, a fresh water green alga for which contradicting phylogenetic relationships were inferred. While some studies placed Mesostigma within the Streptophyta lineage (which includes land plants), others placed it as the deepest green algae divergence. This basal positioning is regarded as a result of long-branch attraction due to poor taxon sampling. Reinvestigation of a 13- taxon mitochondrial amino acid dataset and a sub-dataset of 8 taxa reveals that site sampling, and in particular the treatment of missing data, is just as important a factor for accurate tree reconstruction as taxon sampling. This study identifies a difficulty in recreating the long-branch attraction observed for the 8-taxon dataset in simulated data. The cause is likely to be the smaller number of amino acid characters per site in simulated data compared to real data, highlighting the fact that there are properties of the evolutionary process that are yet to be accurately modeled.
|
7 |
Lineage specific evolution and phylogenetic analysis : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomathematics at Massey University, Palmerston North, New ZealandGrievink, Liat Shavit January 2009 (has links)
Phylogenetic models generally assume a homogeneous, time reversible, stationary process. These assumptions are often violated by the real, far more complex, evolutionary process. This thesis is centered on non-homogeneous, lineage-specific, properties of molecular sequences. It consist several related but independent studies. LineageSpecificSeqgen, an extension to the Seq-Gen program, which allows generation of sequences with changes in the proportion of variable sites, is introduced. This program is then used in a simulation study showing that changes in the proportion of variable sites can hinder tree estimation accuracy, and that tree reconstruction under the best-fit model chosen using a relative test can result in a wrong tree. In this case, the less commonly used absolute model-fit was a better predictor of tree estimation accuracy. This study found that increased taxon sampling of lineages that have undergone a change in the proportion of variable sites was critical for accurate tree reconstruction and that, in contrast to some earlier findings, the accuracy of maximum parsimony is adversely affected by such changes. This thesis also addresses the well-known long-branch attraction artifact. A nonparametric bootstrap test to identify changes in the substitution process is introduced, validated, and applied to the case of Microsporidia, a highly reduced intracellular parasite. Microsporidia was first thought to be an early branching eukaryote, but is now believed to be sister to, or included within, fungi. Its apparent basal eukaryote position is considered a result of long-branch attraction due to an elevated evolutionary rate in the microsporidian lineage. This study shows that long-branch estimates and basal positioning of Microsporidia both correlate with increased proportions of radical substitutions in the microsporidian lineage. In simulated data, such increased proportions of radical substitutions leads to erroneous long-branch estimates. These results suggest that the long microsporidian branch is likely to be a result of an increased proportion of radical substitutions on that branch, rather than increased evolutionary rate per se. The focus of the last study is the intriguing case of Mesostigma, a fresh water green alga for which contradicting phylogenetic relationships were inferred. While some studies placed Mesostigma within the Streptophyta lineage (which includes land plants), others placed it as the deepest green algae divergence. This basal positioning is regarded as a result of long-branch attraction due to poor taxon sampling. Reinvestigation of a 13- taxon mitochondrial amino acid dataset and a sub-dataset of 8 taxa reveals that site sampling, and in particular the treatment of missing data, is just as important a factor for accurate tree reconstruction as taxon sampling. This study identifies a difficulty in recreating the long-branch attraction observed for the 8-taxon dataset in simulated data. The cause is likely to be the smaller number of amino acid characters per site in simulated data compared to real data, highlighting the fact that there are properties of the evolutionary process that are yet to be accurately modeled.
|
8 |
Lineage specific evolution and phylogenetic analysis : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomathematics at Massey University, Palmerston North, New ZealandGrievink, Liat Shavit January 2009 (has links)
Phylogenetic models generally assume a homogeneous, time reversible, stationary process. These assumptions are often violated by the real, far more complex, evolutionary process. This thesis is centered on non-homogeneous, lineage-specific, properties of molecular sequences. It consist several related but independent studies. LineageSpecificSeqgen, an extension to the Seq-Gen program, which allows generation of sequences with changes in the proportion of variable sites, is introduced. This program is then used in a simulation study showing that changes in the proportion of variable sites can hinder tree estimation accuracy, and that tree reconstruction under the best-fit model chosen using a relative test can result in a wrong tree. In this case, the less commonly used absolute model-fit was a better predictor of tree estimation accuracy. This study found that increased taxon sampling of lineages that have undergone a change in the proportion of variable sites was critical for accurate tree reconstruction and that, in contrast to some earlier findings, the accuracy of maximum parsimony is adversely affected by such changes. This thesis also addresses the well-known long-branch attraction artifact. A nonparametric bootstrap test to identify changes in the substitution process is introduced, validated, and applied to the case of Microsporidia, a highly reduced intracellular parasite. Microsporidia was first thought to be an early branching eukaryote, but is now believed to be sister to, or included within, fungi. Its apparent basal eukaryote position is considered a result of long-branch attraction due to an elevated evolutionary rate in the microsporidian lineage. This study shows that long-branch estimates and basal positioning of Microsporidia both correlate with increased proportions of radical substitutions in the microsporidian lineage. In simulated data, such increased proportions of radical substitutions leads to erroneous long-branch estimates. These results suggest that the long microsporidian branch is likely to be a result of an increased proportion of radical substitutions on that branch, rather than increased evolutionary rate per se. The focus of the last study is the intriguing case of Mesostigma, a fresh water green alga for which contradicting phylogenetic relationships were inferred. While some studies placed Mesostigma within the Streptophyta lineage (which includes land plants), others placed it as the deepest green algae divergence. This basal positioning is regarded as a result of long-branch attraction due to poor taxon sampling. Reinvestigation of a 13- taxon mitochondrial amino acid dataset and a sub-dataset of 8 taxa reveals that site sampling, and in particular the treatment of missing data, is just as important a factor for accurate tree reconstruction as taxon sampling. This study identifies a difficulty in recreating the long-branch attraction observed for the 8-taxon dataset in simulated data. The cause is likely to be the smaller number of amino acid characters per site in simulated data compared to real data, highlighting the fact that there are properties of the evolutionary process that are yet to be accurately modeled.
|
Page generated in 0.1091 seconds