Spelling suggestions: "subject:"longterm variability"" "subject:"longterm variability""
1 |
Developing a SARIMAX model for monthly wind speed forecasting in the UKKritharas, Petros January 2014 (has links)
Wind is a fluctuating source of energy and, therefore, it can cause several technical impacts. These can be tackled by forecasting wind speed and thus wind power. The introduction of several statistical models in this field of research has brought to light promising results for improving wind speed predictions. However, there is not converging evidence on which is the optimal method. Over the last three decades, significant research has been carried out in the field of short-term forecasting using statistical models though less work focuses on longer timescales. The first part of this work concentrated on long-term wind speed variability over the UK. Two subsets have been used for assessing the variability of wind speed in the UK on both temporal and spatial coverage over a period representative of the expected lifespan of a wind farm. Two wind indices are presented with a calculated standard deviation of 4% . This value reveals that such changes in the average UK wind power capacity factor is equal to 7%. A parallel line of the research reported herein aimed to develop a novel statistical forecasting model for generating monthly mean wind speed predictions. It utilised long-term historic wind speed records from surface stations as well as reanalysis data. The methodology employed a SARIMAX model that incorporated monthly autocorrelation of wind speed and seasonality, and also included exogenous inputs. Four different cases were examined, each of which incorporated different independent variables. The results disclosed a strong association between the independent variables and wind speed showing correlations up to 0.72. Depending on each case, this relationship occurred from 4- up to 12-month lags. The inter comparison revealed an improvement in the forecasting accuracy of the proposed model compared to a similar model that did not take into account exogenous variables. This finding demonstrates the indisputable potential of using a SARIMAX for long-term wind speed forecasting.
|
2 |
Mécanismes de la variabilité thermique interannuelle à décennale de l’océan supérieur dans la région du bord ouest du Pacifique Nord / Mechanisms of the interannual to decadal thermal variability of the upper ocean in the western boundary region of North PacificPak, Gyun-Do 22 November 2016 (has links)
La variabilité du contenu de chaleur hivernal de l'océan supérieur et ses mécanismes de causalité ont été étudiés en utilisant des observations et des produits de réanalyse dans le Pacifique Nord-Ouest. La relation entre la mousson d'hiver dans l'Asie de l'Est (EAWM) et l'Oscillation du Pacifique Nord (NPO) et leurs impacts sur la température de surface de la mer (SST) sont non stationnaires, avec un changement soudain en 1987/1988. L'EAWM et la NPO, qui étaient bien corrélées en 1973-1987, ne sont pratiquement plus corrélées en 1988-2002. Cette relation non stationnaire est liée au fort affaiblissement décennal de la haute pression Sibérienne après le changement de régime en 1988, ainsi qu'au changement concomitant du dipôle de la NPO positive. L'influence de l'EAWM et de la NPO sur la SST hivernale dans la région d'étude a significativement diminué après 1990. Le bilan de chaleur dans les 400 premiers mètres a été analysé à l'aide des sorties d'un modèle de la circulation océanique générale à haute résolution. Le taux de stockage de chaleur hivernal des échelles interannuelles à décennales est principalement déterminé par l'advection océanique plutôt que par le flux net de chaleur air-mer. Le rôle de l'advection de chaleur devient particulièrement important après le changement de régime en 1990, en association avec la réduction de la variabilité du flux de chaleur en surface causée par une faible variabilité de la SST. Le flux net de chaleur air-mer freine les anomalies thermiques créées par la dynamique océanique associée avec le déplacement méridien du front de l'Extension de l'Oyashio, qui est fortement corrélé avec les modes de téléconnexion de WP et PNA. / Winter upper-ocean heat content variability and its causal mechanisms are investigated using observational and reanalysis products in the western North Pacific. The relationship between the East Asian winter monsoon (EAWM) and the North Pacific Oscillation (NPO) and their impact on the sea surface temperature (SST) are nonstationary, with a sudden change at 1987/1988. During the 1973-87, the EAWM and NPO were significantly correlated to each other, but their correlation practically vanishes during the 1988-2002. This nonstationary relationship is related to the pronounced decadal weakening of the Siberian high after the 1988 regime shift as well as the concomitant positive NPO-like dipole change. The influence of EAWM and NPO to the winter SST in the study region is significantly decreased after the sudden change near-1990. The upper 400 m heat budget in the western North Pacific is analyzed using outputs from a high resolution ocean general circulation model. Winter heat storage rate on interannual to decadal time scales is mainly determined by oceanic heat advection rather than by net air-sea heat flux. The role of heat advection becomes particularly prominent after the 1990 regime shift in association with the reduced variability of surface heat flux caused by weakened SST variability. The net heat flux acts to dampen temperature anomalies caused by the ocean dynamics principally associated with the meridional shift of the Oyashio Extension front, which is significantly correlated with the West Pacific (WP) and Pacific-North America (PNA) teleconnection patterns.
|
Page generated in 0.0661 seconds