• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da interação do Hormônio Tireoideano com o sistema α2 adrenérgico no crescimento ósseo endocondral: uma avaliação em cultura de órgão. [Tese (Doutorado em Ciências Morfofuncionais) ]. São Paulo: Instituto de Ciências Biomédicas, Universidade de São Paulo; 2017. / Thyroid Hormone interaction with the sympathetic nervous system, via &;#945;2 adrenoceptor signaling, to regulate endochondral bone growth: and in vitro evaluation. [Ph.D. Thesis (Morphofunctional Sciences)]. São Paulo: Instituto de Ciências Biomédicas, Universidade de São Paulo; 2017.

Rodrigues, Manuela Miranda 26 February 2018 (has links)
Sabe-se que o hormônio tireoideano (HT) é essencial para o crescimento e desenvolvimento ósseos. No entanto, os mecanismos pelos quais o HT regula esses processos são pouco entendidos. Recentemente, o sistema nervoso simpático (SNS) foi identificado como um potente regulador do metabolismo ósseo. Estudos do nosso grupo mostraram que o HT interage com o SNS para regular a massa e estrutura ósseas, e que essa interação envolve a sinalização adrenoceptora α2 (α2-AR). Também identificamos a presença de todos os subtipos de adrenoceptores α2 adrenérgicos, o α2A- , α2B- e α2C-AR, na lâmina epifiseal (LE) de camundongos. Além disso, observamos que camundongos com inativação gênica isolada do α2A-AR e α2C-AR (α2A-AR -/- e α2C-AR -/- ) apresentam LEs desorganizadas, ossos longos mais curtos, e atraso na ossificação endocondral. Estudos in vivo revelaram, que as LEs de animais α2A-AR -/- e α2C-AR -/- respondem de forma diferente (do que as LEs de animais selvagens) ao excesso e deficiência de HT, o que sugere fortemente que o HT também interage com o SNS para regular o crescimento e o desenvolvimento ósseos. Através de um sistema de cultura de órgãos de ossos longos, o presente estudo teve como objetivo investigar se o HT interage com o SNS diretamente no esqueleto, para regular o crescimento linear ósseo, e se os receptores α2 adrenérgicos estão envolvidos nessa interação. Assim sendo, avaliamos, in vitro, o crescimento linear ósseo de tíbias derivadas de embriões de camundongos (com 15 dias de vida intrauterina) selvagens (WT) e α2C- AR -/- (KO) durante 6 dias. Vimos que as tíbias KO apresentam um menor crescimento longitudinal quando comparadas às tíbias WT, e que o tratamento com 10-8 M de triiodotironina (T3) diminuiu significativamente o crescimento longitudinal das tíbias WT, o que não foi visto nas tíbias KO. Vimos, ainda, que o tratamento com UK 14,304 (UK), um agonista α2 não seletivo, induziu o crescimento longitudinal somente nas tíbias KO. A expressão de genes relacionados com a diferenciação terminal de condrócitos (Col X, IGF-1, Wnt-4 e Runx2) mostrou-se aumentada nas tíbias KO (quando comparada à expressão nas tíbias WT). O tratamento com T3, como esperado, estimulou a expressão desses genes nas tíbias WT, porém diminui a expressão nas amostras KO, chamando a atenção para a importância desses receptores na modulação das ações do T3. Observamos, ainda, que a ativação local dos α2- ARs com o UK bloqueia a expressão desses genes relacionados à diferenciação dos condrócitos, além de bloquear os efeitos positivos do T3 (UK+T3) na expressão desses genes. Esses achados mostram que os receptores α2 adrenérgicos atuam diretamente no esqueleto para controlar a diferenciação terminal dos condrócitos e, portanto, o crescimento longitudinal ósseo, além de permitirem uma interação com a via de sinalização do HT para controlar esses processos. Em conclusão, este estudo mostra que HT interage com o SNS, localmente no esqueleto, via sinalização α2 adrenérgica, para modular o crescimento linear ósseo. / It is well known that thyroid hormone (TH) is essential for normal bone growth and development. However, the mechanisms by which TH regulates these processes are poorly understood. Recently, the sympathetic nervous system (SNS) was identified as a potent regulator of bone metabolism. In vivo studies by our group have shown that TH interacts with the SNS to regulate bone mass and structure, and that this interaction involves α2 adrenoceptor (α2-AR) signaling. We have also identified the presence of α2A- , α2B- e α2C-AR subtypes in the epiphyseal growth plate (EGP) of mice. In addition, we have found that mice with isolated gene deletion of α2A-AR and α2C-AR (α2A-AR -/- and α2C- AR -/- ) show a disorganized EGP, shorter long bones and a delay in endochondral ossification (EO). In vivo studies revealed that the EGP of α2A-AR -/- and α2C-AR -/- animals respond differently (than those of wild-type animals), to TH excess and deficiency, which strongly suggests that TH also interacts with the SNS to regulate bone growth and development. Through a long bone organ culture system, the present study had the goal of investigating if TH interacts with the SNS directly in the skeleton, to regulate the longitudinal bone growth and if α2-AR is involved in this process. Therefore, we evaluated the linear bone growth of tibias derived from 15.5-day-old WT and α2C-AR -/- mouse embryos (E15.5) for 6 days. We have seen that the KO tibias showed a lower longitudinal growth when compared to WT tibias, and that treatment with 10-8 M triiodothyronine (T3) significantly decreased the longitudinal growth of the WT tibias, which was not seen in the KO tibias. We found that the treatment with UK 14.304 (UK), a non-selective α2-agonist, induced the longitudinal growth only of the KO tibias. The expression of genes related to the terminal differentiation of chondrocytes (Col X, IGF-1, Wnt-4 and Runx2) was shown to be increased in the KO tibias (when compared to the expression in WT tibias). Treatment with T3, as expected, stimulated the expression of these genes in WT tibias, but decreased the expression in KO samples, highlighting the importance of these receptors in the modulation of T3 actions. We observed that the local ? 2 -AR activation by UK blocked the expression of these chondrocyte differentiation- related genes, in addition to blocking the positive effects of T3 (UK + T3) in the expression of these genes. These findings show that α2 adrenoceptors act directly in the skeleton, to control the terminal differentiation of chondrocytes and, therefore, the longitudinal bone growth, in addition to allow an interaction with the TH signaling pathway to control these processes. In conclusion, this study shows that TH interacts with the SNS, locally in the skeleton, via α2 adrenergic signaling, to modulate the longitudinal bone growth.
2

The genetic basis of human height : the role of estrogen

Carter, Shea L. January 2008 (has links)
Height is a complex physical trait that displays strong heritability. Adult height is related to length of the long bones, which is determined by growth at the epiphyseal growth plate. Longitudinal bone growth occurs via the process of endochondral ossification, where bone forms over the differentiating cartilage template at the growth plate. Estrogen plays a major role in regulating longitudinal bone growth and is responsible for inducing the pubertal growth spurt and fusion of the epiphyseal growth plate. However, the mechanism by which estrogen promotes epiphyseal fusion is poorly understood. It has been hypothesised that estrogen functions to regulate growth plate fusion by stimulating chondrocyte apoptosis, angiogenesis and bone cell invasion in the growth plate. Another theory has suggested that estrogen exposure exhausts the proliferative capacity of growth plate chondrocytes, which accelerates the process of chondrocyte senescence, leading to growth plate fusion. The overall objective of this study was to gain a greater understanding of the molecular mechanisms behind estrogen-mediated growth and height attainment by examining gene regulation in chondrocytes and the role of some of these genes in normal height inheritance. With the heritability of height so well established, the initial hypothesis was that genetic variation in candidate genes associated with longitudinal bone growth would be involved in normal adult height variation. The height-related genes FGFR3, CBFA1, ER and CBFA1 were screened for novel polymorphisms using denaturing HPLC and RFLP analysis. In total, 24 polymorphisms were identified. Two SNPs in ER (rs3757323 C>T and rs1801132 G>C) were strongly associated with adult male height and displayed an 8 cm and 9 cm height difference between homozygous genotypes, respectively. The TC haplotype of these SNPs was associated with a 6 cm decrease in height and remarkably, no homozygous carriers of the TC haplotype were identified in tall subjects. No significant associations with height were found for polymorphisms in the FGFR3, CBFA1 or VDR genes. In the epiphyseal growth plate, chondrocyte proliferation, matrix synthesis and chondrocyte hypertrophy are all major contributors to long bone growth. As estrogen plays such a significant role in both growth and final height attainment, another hypothesis of this study was that estrogen exerted its effects in the growth plate by influencing chondrocyte proliferation and mediating the expression of chondrocyte marker genes. The examination of genes regulated by estrogen in chondrocyte-like cells aimed to identify potential regulators of growth plate fusion, which may further elucidate mechanisms involved in the cessation of linear growth. While estrogen did not dramatically alter the proliferation of the SW1353 cell line, gene expression experiments identified several estrogen regulated genes. Sixteen chondrocyte marker genes were examined in response to estrogen concentrations ranging from 10-12 M to 10-8 M over varying time points. Of the genes analysed, IHH, FGFR3, collagen II and collagen X were not readily detectable and PTHrP, GHR, ER, BMP6, SOX9 and TGF1 mRNAs showed no significant response to estrogen treatments. However, the expression of MMP13, CBFA1, BCL-2 and BAX genes were significantly decreased. Interestingly, the majority of estrogen regulated genes in SW1353 cells are expressed in the hypertrophic zone of the growth plate. Estrogen is also known to regulate systemic GH secretion and local GH action. At the molecular level, estrogen functions to inhibit GH action by negatively regulating GH signalling. GH treated SW1353 cells displayed increases in MMP9 mRNA expression (4.4-fold) and MMP13 mRNA expression (64-fold) in SW1353 cells. Increases were also detected in their respective proteins. Treatment with AG490, an established JAK2 inhibitor, blocked the GH mediated stimulation of both MMP9 and MMP13 mRNA expression. The application of estrogen and GH to SW1353 cells attenuated GH-stimulated MMP13 levels, but did not affect MMP9 levels. Investigation of GH signalling revealed that SW1353 cells have high levels of activated JAK2 and exposure to GH, estrogen, AG490 and other signalling inhibitors did not affect JAK2 phosphorylation. Interestingly, AG490 treatment dramatically decreased ERK2 signalling, although GH did stimulate ERK2 phosphorylation above control levels. AG490 also decreased CBFA1 expression, a transcription factor known to activate MMP9 and MMP13. Finally, GH and estrogen treatment increased expression of SOCS3 mRNA, suggesting that SOCS3 may regulate JAK/STAT signalling in SW1353 cells. The modulation of GH-mediated MMP expression by estrogen in SW1353 cells represents a potentially novel mechanism by which estrogen may regulate longitudinal bone growth. However, further investigation is required in order to elucidate the precise mechanisms behind estrogen and GH regulation of MMP13 expression in SW1353 cells. This study has provided additional evidence that estrogen and the ER gene are major factors in the regulation of growth and the determination of adult height. Newly identified polymorphisms in the ER gene not only contribute to our understanding of the genetic basis of human height, but may also be useful in association studies examining other complex traits. This study also identified several estrogen regulated genes and indicated that estrogen modifies the expression of genes which are primarily expressed in the hypertrophic region of the epiphyseal growth plate. Furthermore, synergistic studies incorporating GH and estrogen have revealed the ability of estrogen to attenuate the effects of GH on MMP13 expression, revealing potential pathways by which estrogen may modulate growth plate fusion, longitudinal bone growth and even arthritis.

Page generated in 0.0658 seconds