• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A MACHINE LEARNING APPROACH FOR OCEAN EVENT MODELING AND PREDICTION

Unknown Date (has links)
In the last decade, deep learning models have been successfully applied to a variety of applications and solved many tasks. The ultimate goal of this study is to produce deep learning models to improve the skills of forecasting ocean dynamic events in general and those of the Loop Current (LC) system in particular. A specific forecast target is to predict the geographic location of the (LC) extension and duration, LC eddy shedding events for a long lead time with high accuracy. Also, this study aims to improve the predictability of velocity fields (or more precisely, velocity volumes) of subsurface currents. In this dissertation, several deep learning based prediction models have been proposed. The core of these models is the Long-Short Term Memory (LSTM) network. This type of recurrent neural network is trained with Sea Surface Height (SSH) and LC velocity datasets. The hyperparameters of these models are tuned according to each model's characteristics and data complexity. Prior to training, SSH and velocity data are decomposed into their temporal and spatial counterparts.A model uses the Robust Principle Component Analysis is first proposed, which produces a six-week lead time in forecasting SSH evolution. Next, the Wavelet+EOF+LSTM (WELL) model is proposed to improve the forecasting capability of a prediction model. This model is tested on the prediction of two LC eddies, namely eddy Cameron and Darwin. It is shown that the WELL model can predict the separation of both eddies 10 and 14 weeks ahead respectively, which is two more weeks than the DAC model. Furthermore, the WELL model overcomes the problem due to the partitioning step involved in the DAC model. For subsurface currents forecasting, a layer partitioning method is proposed to predict the subsurface field of the LC system. A weighted average fusion is used to improve the consistency of the predicted layers of the 3D subsurface velocity field. The main challenge of forecasting of the LC and its eddies is the small number of events that have occurred over time, which is only once or twice a year, which makes the training task difficult. Forecasting the velocity of subsurface currents is equally challenging because of the limited insitu measurements. / Includes bibliography. / Dissertation (PhD)--Florida Atlantic University, 2021. / FAU Electronic Theses and Dissertations Collection
2

Juvenile Population Dynamics of Families Lutjanidae and Serranidae in the Gulf of Mexico, with Respect to the Loop Current and other Hydrographic Features

Unknown Date (has links)
The Gulf of Mexico (GoM) contains a variety oceanographic features including; the Loop Current, cyclonic/anticyclonic eddies, common water, and the Mississippi River Plume. The relationship these features have on the community assemblages of Families Lutjanidae and Serranidae has been of great interest from both biological and economic standpoints. These families represent some of the most economically important fisheries in the GoM. Identifying the role these features play in the transportation of larval and juvenile nearshore species to offshore environments is vital to resource managers. Using data collected shortly after the Deepwater Horizon Oil Spill via the NOAA Natural Resource Damage Assessment in 2011 as well as cruises conducted by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND) Consortium from 2015-2017, the faunal composition and abundance of these families were analyzed with respect to seasonality, oceanographic features, depth distribution, and time. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
3

Closed-loop Real-time Control of a Novel Linear Magnetostrictive Actuator

Chen, Chien-Fan 2010 August 1900 (has links)
This thesis presents the design of various closed-loop real-time control of a novel linear magnetostrictive actuator. The novel linear magnetostrictive actuator which uses Terfenol-D as the magnetostrictive material was developed by Sadighi. It solves the problem of power consumption in a conventional magnetostrictive actuator. However, the control system of this magnetostrictive actuator cannot control the current in the coils, which limits the performances of the real-time position control. In the closed-loop real-time control system proposed in this thesis, the controller is designed depending on the change of current. The closed-loop real-time control design focused on the position control of the active element in the novel linear magnetostrictive actuator. The closed-loop position-control system of the linear magnetostrictive actuator was successfully designed by implementing a closed-loop current-control system as an inner loop of the entire control system. This design offers the flexibility to design various position controllers in the closed-loop position-control system. The closed-loop current-control design uses pulse-width modulation (PWM) signal to change the current in the coils of the novel linear magnetostrictive actuator. By changing the duty ratio of the PWM signal, the current in the coils can be changed from zero to its maximum value. With a current controller using an integrator with a gain of 10, the current can be controlled with high response time and an error of /- 0.01 A. The position-controller design was successfully conducted by using four different approaches. First, a proportional-integral-derivative (PID) controller which was designed by relay-auto tuning method with experiments exhibited a position error of ±1 μm with a 5 μm peak-to-peak position noise. Second, a PID controller which was designed by root-locus can control the position with a position error of /- 3-4 μm with a 5 μm peak-to-peak position noise. Third, a linear variable velocity controller exhibited a position error of /-5 μm with a 5 mu m peak-to-peak position noise. Then, the sliding mode control (SMC) exhibited a position error of /-5 μm with a 5 μm peak-to-peak position noise.
4

Circulation and Associated Variability in the Intra-Americas Sea: the Role of Loop Current Intrusion and Caribbean Eddies

Lin, Yuehua 03 August 2010 (has links)
Circulation and associated variability in the Intra-Americas Sea (IAS) are examined using observations and numerical models. Vertically integrated transport variations through the Yucatan Channel in the model are found to be related to the intrusion of the Loop Current into the Gulf of Mexico. We argue that the transport variations are part of a “compensation effect” by which transport variations through the Yucatan Channel are at least partly compensated by flow around Cuba. Numerical experiments show that the transport variations result from the interaction between the density anomalies associated with the Loop Current intrusion and the variable bottom topography. The compensation effect is found to be associated with baroclinic (2-layer) flow through the Yucatan Channel at timescales longer than a month, while at shorter timescales (less than a month) the vertical structure of the flow is barotropic. An index, that can be computed from satellite data, is proposed for measuring the impact of the Loop Current intrusion on the transport variability through the Yucatan Channel. This index is shown to be significantly correlated at low frequencies (cutoff 120 days) with the cable estimates of transport between Florida and the Bahamas. We argue that it is the geometric connectivity between the Yucatan Channel and the Straits of Florida between Florida and the Bahamas that accounts for the relationship. A three-dimensional, data-assimilative, ocean circulation model is developed in order to simulate circulation, hydrography and associated variability in the IAS from 1999 to 2002. The model performance is assessed by comparing model results with various observations made in the IAS during this period. Model results are used to study the role played by Caribbean eddies in the dynamics of monthly to seasonal (with timescales of 30-120 days) circulation variability in the IAS. It is shown that the variations in vertically integrated transport between Nicaragua and Jamaica are linked to the interaction of Caribbean eddies with the Nicaraguan Rise. The mechanism can be explained in terms of the form drag effect acting across the Nicaraguan Rise.
5

The Dynamics of the Mississippi River Plume and Interactions with the Gulf of Mexico Offshore Circulation

Schiller, Rafael V 22 June 2011 (has links)
River plumes often develop in complex environments, where variable coastal and bottom topography, ambient currents, winds and tides may play important roles in shaping the plume evolution. When all these factors are present, the plume dynamics may become intricate and unclear. The objective of this study is to understand the processes controlling the dynamics of a large river plume that is affected by strong boundary currents, variable winds and complex topography. The Mississippi River (MR) plume is the study case of this dissertation work, and focus is given to the interactions between the plume and the offshore circulation of the Gulf of Mexico (GoM). A series of numerical experiments was designed to investigate the impact of different factors on the development of a large scale river plume in scenarios with variable degrees of complexity. First, a box-like model with an idealized estuary was designed to address the general development of a mid-latitude river plume and assess the variability of the plume with changes in the outflow conditions at the river mouth. The structure and development of the plume in the flat-bottom, receiving basin was highly dependent on the degree of freshwater mixing at the source. Larger freshwater mixing enhanced the estuarine gravitational circulation and modified the dynamical balance at the estuary mouth. Those changes effectively modified the shape of the bulge and length/transport scales of the coastal current. Sloping-bottom conditions further modified the development of the plume. Secondly, a Northern GoM model was designed and numerical experiments were conducted to investigate the specific dynamics of the MR plume, in the presence of both shelf and basin-wide circulation. In particular, buoyancy-driven (due to the MR and all other major Northern GoM rivers) and wind-driven currents were studied on the shelf, while the extension of the Loop Current and associated frontal eddies were considered as major factors in the shelf to offshore interactions; wind-driven, shelfbreak eddies were also considered. Process-oriented experiments demonstrate that westerly and southerly winds promoted the development of a surface Ekman layer that enhances the offshore advection of plume waters. The steep topography in the vicinity of the MR Delta was a favorable condition for that process. When the MR plume was subject to a full-blown scenario (realistically-forced experiment nested within a large-scale model), complex interactions between wind-driven and eddy-driven dynamics determined the fate of the plume waters. Offshore removal is a frequent plume pathway, and the offshore transport can be as large as the wind-driven shelf transport. The offshore pathways depend on the position of the eddies near the shelf edge, their life span and the formation of eddy pairs that generate coherent cross-shelf flows. Strong eddy-plume interactions were observed when the Loop Current (LC) system impinged against the shelfbreak, causing the formation of coherent, narrow low-salinity bands that extended toward the Gulf interior. The offshore transport of MR water is a year-round process, but the interactions between the MR plume and the LC system have large inter-annual variability. Plume to LC interactions are determined by episodic northward intrusions of the LC system in the NGoM. The interactions are dictated by the proximity of the LC system to the MR Delta and by wind effects. On average, plume to LC interactions correspond to ~ 12 % of the year-round, total freshwater transport near the MR Delta, but this percentage can go up to 30 % in individual years. At the time of the plume to LC interactions, an average value of LC freshwater entrainment was estimated to be ~ 4,150 m3 s-1. The findings presented here are a major contribution toward the understanding of the cross-marginal and basin-wide transport of MR waters by a large-scale current system, and the connectivity to remote regions, such as the South Florida region and the Florida Keys.
6

Faunal Composition and Distribution of Pelagic Larval and Juvenile Flatfishes (Teleostei: Pleuronectiformes) in the Northern Gulf of Mexico: Connectivity Between Coastal and Oceanic Epipelagic Ecosystems

Malarky, Lacey 08 December 2015 (has links)
Pleuronectiformes (flatfishes) occur throughout the global oceans, and have high ecological and commercial importance in some areas. Though much is known regarding life history, abundance, and distribution for the benthic adult stage of flatfish species, much less is known about the pelagic larval phases of flatfishes in the open ocean. Taxonomic uncertainty and limited sampling in the oceanic Gulf of Mexico contribute to data gaps with respect to the distribution of early life history stage of flatfishes in this region. Knowledge of the faunal composition, abundance and distribution of larval flatfishes, such as members of Bothus, which have extended pelagic phases, is important for modeling their population dynamics as well as for understanding the importance of connectivity between neritic and oceanic ecosystems in their life histories. Pleuronectiform specimens utilized in this study were collected in the northern offshore Gulf of Mexico during several cruises conducted throughout 2010-2011 as part of the NOAA Natural Resource Damage Assessment (NRDA) after the Deepwater Horizon Oil Spill (DWHOS). The Offshore Nekton Sampling and Analysis program (ONSAP) was established to determine composition, abundance and distribution of deep-water invertebrates and fishes in Gulf of Mexico waters that were potentially affected by the DWHOS. Results of the first large-scale discrete-depth distributional analysis of fishes in this region revealed that flatfishes were an intrinsic component of the oceanic ichthyofauna of these waters. A total of 2365 flatfish specimens were collected in offshore waters, representing four families and 11 of the 18 genera that occur in the Gulf of Mexico. Species composition was dominated by members of the genus Bothus, which had a high frequency of occurrence in the epipelagic zone throughout the year. Citharichthys spilopterus and Trichopsetta ventralis were the second- and third-most abundant and frequently occurring taxa, respectively. Detailed spatial analyses of taxa in the epipelagic zone revealed that larvae of Citharichthys spilopterus were only collected in winter and occurred most frequently near the continental shelf break, while early life stages of Bothus spp. were more abundant at the northern convergence flow of a large anticyclonic Loop Current eddy during spring and summer.
7

On the Response to Tropical Cyclones in Mesoscale Oceanic Eddies

Jaimes, Benjamin 18 December 2009 (has links)
Tropical cyclones (TCs) often change intensity as they move over mesoscale oceanic features, as a function of the oceanic mixed layer (OML) thermal response (cooling) to the storm's wind stress. For example, observational evidence indicates that TCs in the Gulf of Mexico rapidly weaken over cyclonic cold core eddies (CCEs) where the cooling response is enhanced, and they rapidly intensify over anticyclonic warm features such as the Loop Current (LC) and Warm Core Eddies (WCEs) where OML cooling is reduced. Understanding this contrasting thermal response has important implications for oceanic feedback to TCs' intensity in forecasting models. Based on numerical experimentation and data acquired during hurricanes Katrina and Rita, this dissertation delineates the contrasting velocity and thermal response to TCs in mesoscale oceanic eddies. Observational evidence and model results indicate that, during the forced stage, the wind-driven horizontal current divergence under the storm's eye is affected by the underlying geostrophic circulation. Upwelling (downwelling) regimes develop when the wind stress vector is with (against) the geostrophic OML velocity vector. During the relaxation stage, background geostrophic circulations modulate vertical dispersion of OML near-inertial energy. The near-inertial velocity response is subsequently shifted toward more sub-inertial frequencies inside WCEs, where rapid vertical dispersion prevents accumulation of kinetic energy in the OML that reduces vertical shears and layer cooling. By contrast, near-inertial oscillations are vertically trapped in OMLs inside CCEs that increases vertical shears and entrainment. Estimates of downward vertical radiation of near-inertial wave energies were significantly stronger in the LC bulge (12.1X10 super -2 W m super -2) compared to that in CCEs (1.8X10 super -2 W m super -2). The rotational and translation properties of the geostrophic eddies have an important impact on the internal wave wake produced by TCs. More near-inertial kinetic energy is horizontally trapped in more rapidly rotating eddies. This response enhances vertical shear development and mixing. Moreover, the upper ocean temperature anomaly and near-inertial oscillations induced by TCs are transported by the westward-propagating geostrophic eddies. From a broader perspective, coupled models must capture oceanic features to reproduce the differentiated TC-induced OML cooling to improve intensity forecasting.

Page generated in 0.0702 seconds