• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reduction of matrices to canonical form under generalized Lorentzian transformations

Bell, Howard Edwin, January 1961 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1961. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
2

The Lorentz-Lorenz function of ethane

Burton, Michel Alan January 1973 (has links)
This study measured the Lorentz-Lorenz function for ethane as determined by [formula omitted] for densities from 1 to 200 amagats, where ℒ is the Lorentz-Lorenz function, ρ is the density, and n is the index of refraction for a wavelength of 6328 Å. ℒ was found to be constant to within ½ % with an average value of .3794± .0003 cc/gm for values of ℒ corresponding to ∣ρ−ρc∣ ≤ .2. The index of refraction of ethane was measured by using a light-weight cell which had two sapphire windows set at an angle to each other and through which a plane wave of monochromatic light was passed. A micrometer-driven mirror was used to direct the light into a collimating telescope and the angle of deflection was then related to n. ρ was measured by weighing the cell and its contents on a precision balance. Ethane could be released from the cell to vary ρ. The coexistence curve was measured and three parameters used to fit the curve. This enabled extrapolation for the critical temperature which was found to be 32.079 ± .001 °C . Extrapolation of the rectilinear diameter gave a critical density of .2062 ± .0003 gm/cc. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
3

Lorentz wave maps /

Woods, Tadg Howard, January 2001 (has links)
Thesis (Ph. D.)--University of Oregon, 2001. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 122-123). Also available for download via the World Wide Web; free to University of Oregon users.
4

On the variability of the fine structure constant /

Evans, Jason L. January 2004 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Physics and Astronomy, 2004. / Includes bibliographical references (p. 87-88).
5

A symmetry’s tale: from the material to the celestial

Sun, Guanhao January 2022 (has links)
Symmetry has played a crucial role in our understanding of physical systems. In this thesis, we review several works based on investigating the symmetry properties of theories. We examine and improve the Noether's theorem and the coset construction, both powerful tools when studying the symmetry aspects of a physical system. We manipulate the intrinsic ambiguities in the derivation of the stress-energy tensor using Noether's theorem to systematically compute, without any guesswork, the necessary ``improvement terms'' which make the tensor satisfy certain algebraic properties such as symmetry and tracelessness, even off-shell. We then construct a new type of coset construction, which can accommodate relativistic particles with arbitrary spins. This is the first work we know of to incorporate arbitrary spin degrees of freedom into coset construction. We then present two interesting examples of condensed matter systems described by effective field theories that come from spontaneous symmetry breaking. For the so-called framid, we present the peculiar behavior of its stress-energy tensor that it is Lorentz-invariant even though the system breaks Lorentz boosts spontaneously. An analogy is drawn to the cosmological constant problem since the vacuum energy there and the Lorentz-breaking terms here are all surprisingly zero. Lastly, we describe how the inflation of the universe can be driven by a solid. We focus on the icosahedral inflation model, where the isotropies of background evolution and scalar power spectrum are guaranteed although the system is anisotropic. We discuss some observational signatures of this model.

Page generated in 0.1677 seconds