• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Numerical Study of the Lorenz and Lorenz-Stenflo Systems

Ekola, Tommy January 2005 (has links)
<p>In 1998 the Swedish mathematician Warwick Tucker used rigorous interval arithmetic and normal form theory to prove the existence of a strange attractor in the Lorenz system. In large parts, that proof consists of computations implemented and performed on a computer. This thesis is an independent numerical verification of the result obtained by Warwick Tucker, as well as a study of a higher-dimensional system of ordinary differential equations introduced by the Swedish physicist Lennart Stenflo.</p><p>The same type of mapping data as Warwick Tucker obtained is calculated here via a combination of numerical integration, solving optimisation problems and a coordinate change that brings the system to a normal form around the stationary point in the origin. This data is collected in a graph and the problem of determining the existence of a strange attractor is translated to a few graph theoretical problems. The end result, after the numerical study, is a support for the conclusion that the attractor set of the Lorenz system is a strange attractor and also for the conclusion that the Lorenz-Stenflo system possesses a strange attractor.</p>
2

A Numerical Study of the Lorenz and Lorenz-Stenflo Systems

Ekola, Tommy January 2005 (has links)
In 1998 the Swedish mathematician Warwick Tucker used rigorous interval arithmetic and normal form theory to prove the existence of a strange attractor in the Lorenz system. In large parts, that proof consists of computations implemented and performed on a computer. This thesis is an independent numerical verification of the result obtained by Warwick Tucker, as well as a study of a higher-dimensional system of ordinary differential equations introduced by the Swedish physicist Lennart Stenflo. The same type of mapping data as Warwick Tucker obtained is calculated here via a combination of numerical integration, solving optimisation problems and a coordinate change that brings the system to a normal form around the stationary point in the origin. This data is collected in a graph and the problem of determining the existence of a strange attractor is translated to a few graph theoretical problems. The end result, after the numerical study, is a support for the conclusion that the attractor set of the Lorenz system is a strange attractor and also for the conclusion that the Lorenz-Stenflo system possesses a strange attractor. / QC 20101007

Page generated in 0.1166 seconds