• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

HIGH PERFORMANCE PIEZOELECTRIC MATERIALS AND DEVICES FOR MULTILAYER LOW TEMPERATURE CO-FIRED CERAMIC BASED MICROFLUIDIC SYSTEMS

Zhang, Wenli 01 January 2011 (has links)
The incorporation of active piezoelectric elements and fluidic components into micro-electromechanical systems (MEMS) is of great interest for the development of sensors, actuators, and integrated systems used in microfluidics. Low temperature cofired ceramics (LTCC), widely used as electronic packaging materials, offer the possibility of manufacturing highly integrated microfluidic systems with complex 3-D features and various co-firable functional materials in a multilayer module. It would be desirable to integrate high performance lead zirconate titanate (PZT) based ceramics into LTCC-based MEMS using modern thick film and 3-D packaging technologies. The challenges for fabricating functional LTCC/PZT devices are: 1) formulating piezoelectric compositions which have similar sintering conditions to LTCC materials; 2) reducing elemental inter-diffusion between the LTCC package and PZT materials in co-firing process; and 3) developing active piezoelectric layers with desirable electric properties. The goal of present work was to develop low temperature fired PZT-based materials and compatible processing methods which enable integration of piezoelectric elements with LTCC materials and production of high performance integrated multilayer devices for microfluidics. First, the low temperature sintering behavior of piezoelectric ceramics in the solid solution of Pb(Zr0.53,Ti0.47)O3-Sr(K0.25, Nb0.75)O3 (PZT-SKN) with sintering aids has been investigated. 1 wt% LiBiO2 + 1 wt% CuO fluxed PZT-SKN ceramics sintered at 900oC for 1 h exhibited desirable piezoelectric and dielectric properties with a reduction of sintering temperature by 350oC. Next, the fluxed PZT-SKN tapes were successfully laminated and co-fired with LTCC materials to build the hybrid multilayer structures. HL2000/PZT-SKN multilayer ceramics co-fired at 900oC for 0.5 h exhibited the optimal properties with high field d33 piezoelectric coefficient of 356 pm/V. A potential application of the developed LTCC/PZT-SKN multilayer ceramics as a microbalance was demonstrated. The final research focus was the fabrication of an HL2000/PZT-SKN multilayer piezoelectric micropump and the characterization of pumping performance. The measured maximum flow rate and backpressure were 450 μl/min and 1.4 kPa respectively. Use of different microchannel geometries has been studied to improve the pumping performance. It is believed that the high performance multilayer piezoelectric devices implemented in this work will enable the development of highly integrated LTCC-based microfluidic systems for many future applications.
2

The Development and Biocompatibility of Low Temperature Co-Fired Ceramic (LTCC) for Microfluidic and Biosensor Applications

Luo, Jin 01 January 2014 (has links)
Low temperature co-fired ceramic (LTCC) electronic packaging materials are applied for their electrical and mechanical properties, high reliability, chemical stability and ease of fabrication. Three dimensional features can also be prepared allowing integration of microfluidic channels and cavities inside LTCC modules. Mechanical, optical, electrical, microfluidic functions have been realized in single LTCC modules. For these reasons LTCC is attractive for biomedical microfluidics and Lab-on-a-Chip systems. However, commercial LTCC systems, optimized for microelectrics applications, have unknown cytocompatibility, and are not compatible with common surface functionalization chemistries. The first goal of this work is to develop biocompatible LTCC materials for biomedical applications. In the current work, two different biocompatible LTCC substrate materials are conceived, formulated and evaluated. Both materials are based from well-known and widely utilized biocompatible materials. The biocompatibilities of the developed LTCC materials for in-vitro applications are studied by cytotoxicity assays, including culturing endothelial cells (EC) both in LTCC leachate and directly on the LTCC substrates. The results demonstrate the developed LTCC materials are biocompatible for in-vitro biological applications involving EC. The second goal of this work is to develop functional capabilities in LTCC microfluidic systems suitable for in-vitro and biomedical applications. One proposed application is the evaluation of oxygen tension and oxidative stress in perfusion cell culture and bioreactors. A Clark-type oxygen sensor is successfully integrated with LTCC technique in this work. In the current work, a solid state proton conductive electrolyte is used to integrate an oxygen sensor into the LTCC. The measurement of oxygen concentration in Clark-type oxygen sensor is based on the electrochemical reaction between working electrode and counter electrode. Cyclic voltammetry and chronoamperometry are measured to determine the electrochemical properties of oxygen reduction in the LTCC based oxygen sensor. The reduction current showed a linear relationship with oxygen concentration. In addition, LTCC sensor exhibits rapid response and sensitivity in the physiological range 1─9 mg/L. The fabricated devices have the capabilities to regulate oxygen supply and determination of local dissolved oxygen concentration in the proposed applications including perfusion cell culture and biological assays.

Page generated in 0.2858 seconds