• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the use of low-rank arithmetic to reduce the complexity of parallel sparse linear solvers based on direct factorization techniques / Utilisation de la compression low-rank pour réduire la complexité des solveurs creux parallèles basés sur des techniques de factorisation directes.

Pichon, Grégoire 29 November 2018 (has links)
La résolution de systèmes linéaires creux est un problème qui apparaît dans de nombreuses applications scientifiques, et les solveurs creux sont une étape coûteuse pour ces applications ainsi que pour des solveurs plus avancés comme les solveurs hybrides direct-itératif. Pour ces raisons, optimiser la performance de ces solveurs pour les architectures modernes est un problème critique. Cependant, les contraintes mémoire et le temps de résolution limitent l’utilisation de ce type de solveur pour des problèmes de très grande taille. Pour les approches concurrentes, par exemple les méthodes itératives, des préconditionneurs garantissant une bonne convergence pour un large ensemble de problèmes sont toujours inexistants. Dans la première partie de cette thèse, nous présentons deux approches exploitant la compression Block Low-Rank (BLR) pour réduire la consommation mémoire et/ou le temps de résolution d’un solveur creux. Ce format de compression à plat, sans hiérarchie, permet de tirer profit du caractère low-rank des blocs apparaissant dans la factorisation de systèmes linéaires creux. La solution proposée peut être utilisée soit en tant que solveur direct avec une précision réduite, soit comme un préconditionneur très robuste. La première approche, appelée Minimal Memory, illustre le meilleur gain mémoire atteignable avec la compression BLR, alors que la seconde approche, appelée Just-In-Time, est dédiée à la réduction du nombre d’opérations, et donc du temps de résolution. Dans la seconde partie, nous présentons une stratégie de reordering qui augmente la granularité des blocs pour tirer davantage profit de la localité dans l’utilisation d’architectures multi-coeurs et pour fournir de tâches plus volumineuses aux GPUs. Cette stratégie s’appuie sur la factorisation symbolique par blocs pour raffiner la numérotation produite par des outils de partitionnement comme Metis ou Scotch, et ne modifie pas le nombre d’opérations nécessaires à la résolution du problème. A partir de cette approche, nous proposons dans la troisième partie de ce manuscrit une technique de clustering low-rank qui a pour objectif de former des clusters d’inconnues au sein d’un séparateur. Nous démontrons notamment les intérêts d’une telle approche par rapport aux techniques de clustering classiquement utilisées. Ces deux stratégies ont été développées pour le format à plat BLR, mais sont également une première étape pour le passage à un format hiérarchique. Dans la dernière partie de cette thèse, nous nous intéressons à une modification de la technique de dissection emboîtée afin d’aligner les séparateurs par rapport à leur père pour obtenir des structures de données plus régulières. / Solving sparse linear systems is a problem that arises in many scientific applications, and sparse direct solvers are a time consuming and key kernel for those applications and for more advanced solvers such as hybrid direct-iterative solvers. For those reasons, optimizing their performance on modern architectures is critical. However, memory requirements and time-to-solution limit the use of direct methods for very large matrices. For other approaches, such as iterative methods, general black-box preconditioners that can ensure fast convergence for a wide range of problems are still missing. In the first part of this thesis, we present two approaches using a Block Low-Rank (BLR) compression technique to reduce the memory footprint and/or the time-to-solution of a supernodal sparse direct solver. This flat, non-hierarchical, compression method allows to take advantage of the low-rank property of the blocks appearing during the factorization of sparse linear systems. The proposed solver can be used either as a direct solver at a lower precision or as a very robust preconditioner. The first approach, called Minimal Memory, illustrates the maximum memory gain that can be obtained with the BLR compression method, while the second approach, called Just-In-Time, mainly focuses on reducing the computational complexity and thus the time-to-solution. In the second part, we present a reordering strategy that increases the block granularity to better take advantage of the locality for multicores and provide larger tasks to GPUs. This strategy relies on the block-symbolic factorization to refine the ordering produced by tools such as Metis or Scotch, but it does not impact the number of operations required to solve the problem. From this approach, we propose in the third part of this manuscript a new low-rank clustering technique that is designed to cluster unknowns within a separator to obtain the BLR partition, and demonstrate its assets with respect to widely used clustering strategies. Both reordering and clustering where designed for the flat BLR representation but are also a first step to move to hierarchical formats. We investigate in the last part of this thesis a modified nested dissection strategy that aligns separators with respect to their father to obtain more regular data structure.
2

Bridging the Gap Between H-Matrices and Sparse Direct Methods for the Solution of Large Linear Systems / Combler l’écart entre H-Matrices et méthodes directes creuses pour la résolution de systèmes linéaires de grandes tailles

Falco, Aurélien 24 June 2019 (has links)
De nombreux phénomènes physiques peuvent être étudiés au moyen de modélisations et de simulations numériques, courantes dans les applications scientifiques. Pour être calculable sur un ordinateur, des techniques de discrétisation appropriées doivent être considérées, conduisant souvent à un ensemble d’équations linéaires dont les caractéristiques dépendent des techniques de discrétisation. D’un côté, la méthode des éléments finis conduit généralement à des systèmes linéaires creux, tandis que les méthodes des éléments finis de frontière conduisent à des systèmes linéaires denses. La taille des systèmes linéaires en découlant dépend du domaine où le phénomène physique étudié se produit et tend à devenir de plus en plus grand à mesure que les performances des infrastructures informatiques augmentent. Pour des raisons de robustesse numérique, les techniques de solution basées sur la factorisation de la matrice associée au système linéaire sont la méthode de choix utilisée lorsqu’elle est abordable. A cet égard, les méthodes hiérarchiques basées sur de la compression de rang faible ont permis une importante réduction des ressources de calcul nécessaires pour la résolution de systèmes linéaires denses au cours des deux dernières décennies. Pour les systèmes linéaires creux, leur utilisation reste un défi qui a été étudié à la fois par la communauté des matrices hiérarchiques et la communauté des matrices creuses. D’une part, la communauté des matrices hiérarchiques a d’abord exploité la structure creuse du problème via l’utilisation de la dissection emboitée. Bien que cette approche bénéficie de la structure hiérarchique qui en résulte, elle n’est pas aussi efficace que les solveurs creux en ce qui concerne l’exploitation des zéros et la séparation structurelle des zéros et des non-zéros. D’autre part, la factorisation creuse est accomplie de telle sorte qu’elle aboutit à une séquence d’opérations plus petites et denses, ce qui incite les solveurs à utiliser cette propriété et à exploiter les techniques de compression des méthodes hiérarchiques afin de réduire le coût de calcul de ces opérations élémentaires. Néanmoins, la structure hiérarchique globale peut être perdue si la compression des méthodes hiérarchiques n’est utilisée que localement sur des sous-matrices denses. Nous passons en revue ici les principales techniques employées par ces deux communautés, en essayant de mettre en évidence leurs propriétés communes et leurs limites respectives, en mettant l’accent sur les études qui visent à combler l’écart qui les séparent. Partant de ces observations, nous proposons une classe d’algorithmes hiérarchiques basés sur l’analyse symbolique de la structure des facteurs d’une matrice creuse. Ces algorithmes s’appuient sur une information symbolique pour grouper les inconnues entre elles et construire une structure hiérarchique cohérente avec la disposition des non-zéros de la matrice. Nos méthodes s’appuient également sur la compression de rang faible pour réduire la consommation mémoire des sous-matrices les plus grandes ainsi que le temps que met le solveur à trouver une solution. Nous comparons également des techniques de renumérotation se fondant sur des propriétés géométriques ou topologiques. Enfin, nous ouvrons la discussion à un couplage entre la méthode des éléments finis et la méthode des éléments finis de frontière dans un cadre logiciel unique. / Many physical phenomena may be studied through modeling and numerical simulations, commonplace in scientific applications. To be tractable on a computer, appropriated discretization techniques must be considered, which often lead to a set of linear equations whose features depend on the discretization techniques. Among them, the Finite Element Method usually leads to sparse linear systems whereas the Boundary Element Method leads to dense linear systems. The size of the resulting linear systems depends on the domain where the studied physical phenomenon develops and tends to become larger and larger as the performance of the computer facilities increases. For the sake of numerical robustness, the solution techniques based on the factorization of the matrix associated with the linear system are the methods of choice when affordable. In that respect, hierarchical methods based on low-rank compression have allowed a drastic reduction of the computational requirements for the solution of dense linear systems over the last two decades. For sparse linear systems, their application remains a challenge which has been studied by both the community of hierarchical matrices and the community of sparse matrices. On the one hand, the first step taken by the community of hierarchical matrices most often takes advantage of the sparsity of the problem through the use of nested dissection. While this approach benefits from the hierarchical structure, it is not, however, as efficient as sparse solvers regarding the exploitation of zeros and the structural separation of zeros from non-zeros. On the other hand, sparse factorization is organized so as to lead to a sequence of smaller dense operations, enticing sparse solvers to use this property and exploit compression techniques from hierarchical methods in order to reduce the computational cost of these elementary operations. Nonetheless, the globally hierarchical structure may be lost if the compression of hierarchical methods is used only locally on dense submatrices. We here review the main techniques that have been employed by both those communities, trying to highlight their common properties and their respective limits with a special emphasis on studies that have aimed to bridge the gap between them. With these observations in mind, we propose a class of hierarchical algorithms based on the symbolic analysis of the structure of the factors of a sparse matrix. These algorithms rely on a symbolic information to cluster and construct a hierarchical structure coherent with the non-zero pattern of the matrix. Moreover, the resulting hierarchical matrix relies on low-rank compression for the reduction of the memory consumption of large submatrices as well as the time to solution of the solver. We also compare multiple ordering techniques based on geometrical or topological properties. Finally, we open the discussion to a coupling between the Finite Element Method and the Boundary Element Method in a unified computational framework.

Page generated in 0.1008 seconds