• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 16
  • 15
  • 14
  • 6
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 145
  • 145
  • 37
  • 34
  • 24
  • 23
  • 21
  • 20
  • 20
  • 18
  • 17
  • 17
  • 17
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Large-Eddy Simulation and Active Flow Control of Low-Reynolds Number Flow through a Low-Pressure Turbine Cascade

POONDRU, SHIRDISH 18 April 2008 (has links)
No description available.
42

DESIGN AND VALIDATION OF A HIGH-LIFT LOW-PRESSURE TURBINE BLADE

McQuilling, Mark W. 28 September 2007 (has links)
No description available.
43

PHASE-LOCKED PIV INVESTIGATION OF THE EFFECTS OF THE BLOWING RATIO OF A PULSED VORTEX GENERATOR JET IN A LOW-PRESSURE TURBINE

Woods, Nathan Michael 02 October 2007 (has links)
No description available.
44

Effect of a drag reducing agent on pressure drop and flow regime transitions in multiphase horizontal low pressure pipelines

Vancko, Jr., Robert M. January 1997 (has links)
No description available.
45

Etude du développement de la projection plasma sous très basse pression / Study on Development of Very Low Pressure Plasma Spraying

He, Pengjiang 05 December 2014 (has links)
La technologie de projection plasma sous basse pression a attiré l’attention de nombreux chercheurs comme une nouvelle technique qui permet d’établir un pont entre la projection thermique conventionnelle et le dépôt physique en phase vapeur. Ainsi, cette technologie étend les limites de projection thermique classique et augmente également la vitesse de croissance des dépôts par rapport aux procédés PVD ou CVD classiques. Cette technique peut évaporer totalement ou partiellement les poudres injectées et mener à la réalisation de revêtements à microstructure colonnaire et/ou plus denses, difficiles à réaliser avec des procédés de projection thermique conventionnels. La projection plasma de suspension a été effectuée pour la première fois sous basse pression. L’injection axiale de suspension avec une torche tri-cathodes permet d’augmenter l’échange enthalpique entre le jet de plasma et les poudres après l’évaporation du solvant. La spectroscopie à l’émission optique (OES) a été utilisée pour estimer la température électronique et vérifier l’existence de phase vapeur d’YSZ dans le jet de plasma. Finalement, des revêtements plus denses furent réalisés (comparés à ceux préparés par projection plasma de suspension à pression atmosphérique présentant des particules fondues, agglomérées et de la condensation de vapeur. Des tests de nano-indentation instrumentée ont été effectués sur la surface polie des dépôts réalisés. Les résultats montrent des valeurs de 5,8 GPa pour la dureté et 114,5 GPa pour le module d’élasticité, augmentant de 61% et 31%, respectivement, en comparaison avec les valeurs obtenues par SPS sous atmosphère ambiante. Les essais de projection de poudre YSZ agglomérée ont été réalisés avec une torche F4-VB dans le but de synthétiser une phase vapeur d’YSZ. On observe que les dépôts peuvent se former derrière les échantillons en céramique, sans vis-à-vis du plasma, par condensation de vapeur. En face de cette torche, des revêtements composites ont été obtenus par un mélange de poudres fondues et condensation de vapeur, simultanément. Cependant la quantité de phase vapeur est très faible dans le jet de plasma. Pour comprimer ce jet sous basse pression et afin d’améliorer l’échange d’enthalpie entre le jet de plasma et les poudres injectées, une buse rallongée a été mise en place sur la torche F4-VB. Les revêtements présentent ainsi une microstructure plus dense. Ceci est attribué à la haute vitesse des particules fondues vers le substrat suite à l’utilisation de la buse modifiée. Ce type de revêtement montre une valeur maximale de microdureté Vickers de 1273 Hv100 g. Par ailleurs, la réalisation de dépôts de carbures a été effectuée. Les résultats montrent la possibilité de former des carbures par projection plasma sous basse pression. Les revêtements composites (TiC/Ti) sont déposés par projection plasma réactif sous basse pression en utilisant le méthane comme gaz porteur. La température électronique Te calculée est d’environ 6200 K selon les résultats d’OES, ce qui est supérieur à la température d’ébullition du Ti et de TiC. Le revêtement de Ti pur présente une microstructure dense alors que TiC/Ti présente une microstructure lamellaire. Cependant, la quantité de TiC dans les revêtements est d’environ 20 vol.%. La microdureté Vickers, effectuée sur surface polie, a tendance à diminuer de 846±152 à 773±86 Hv100 g avec l’augmentation de la distance de projection. / As a new technology, the very low pressure plasma spraying has attracted attentions of many researchers, making it possible to establish a bridge between the conventional atmospheric plasma spraying (APS) and the vapor deposition (PVD or CVD). As a result, this new technology enlarges the limitation of APS and increases the deposition rate in comparison with the PVD or CVD. It is possible to evaporate partially the injected material and even evaporate completely and finally realize the columnar or dense coatings from the vapor or the mixture of vapor and liquid. The suspension plasma spraying is performed for the first time at low pressure. Taking consideration of the configuration of the three-cathode torch, the axial injection of the suspension is conducted which can increase the enthalpy change between the plasma jet and the sprayed material. The data of optical emission spectroscopy (OES) could be used to calculate the electron temperature and verify the existence of vapor of YSZ in the plasma jet. Finally, the dense coating was prepared by suspension plasma spraying at low pressure, which is composed of the melted particles, the agglomerated particles and the vapor deposition. The test of nano-indentation is conducted on the polished surface. It shows a value of 5.8 GPa for the microhardness and 114.5 GPa for the elastic modulus, increasing 61% and 31%, respectively, compared with the values obtained by SPS in the ambient atmosphere. In this study, another torch F4-VB is also conducted even of it has a low power in compared with that of O3CP torch. The powder feed rate is reduced to about 1.5 g·min-1 to achieve the vapor of YSZ taking the low power input of the torch into consideration. The columnar structure coating is realized from vapor deposition out of line of sight of projection upon the ceramic tubes. The composite structure coating is deposited by the mixture of melted particles and the vapor deposition simultaneously in front of this torch. But the quantity of vapor of YSZ is low in plasma jet. In order to compress the larger plasma jet and then improve the enthalpy change between the plasma jet and sprayed particles, an extended nozzle is prepared. It shows that the coating has a dense structure, which can be attributed to higher velocity of the melted powders. The coating shows a maximum value of microhardness Vickers up to 1273 Hv100 g. The composite coating of TiC/ Ti is realized by reactive plasma spraying using the methane as the carrier gas. The electron temperature Te is calculated to be 6200 K, which is over the boiling point of TiC and Ti. The coating Ti shows a dense structure and the composite coating TiC/Ti shows a lamellar structure. But the quantity of TiC in the composite coating is very low, about 20 vol.%. The Vickers microhardness is performed on the polished surface. It shows a decreasing tendency from 846 ± 152 to 773 ± 86 Hv100g with the increase of spraying distance. The tribological test is also implemented showing a high value of the coefficient of friction of 0.78 to 0.85, which can lead to a high abrasion. In order to synthesize a larger quantity of TiC in the composite coating, a higher power input torch should be put into action in the future.
46

A Numerical and Experimental Investigation of Flow Induced Noise In Hydraulic Counterbalance Valves

Elsheikh, Mutasim Mohamed 01 January 2015 (has links)
The main objective of this study is to explore the complex fluid flow phenomena that result in the generation of a high frequency noise in counterbalance valves through an experimental and numerical investigation of the flow. Once the influence of the different components involved in noise generation is established, a secondary objective is the introduction of design modifications that eliminate the undesired effect without altering the operation envelope or the performance of the valve. A hydraulic test bench was used to carry out an experimental investigation of the noise generation process. A computer based data acquisition system was used to record pressure fluctuations, flowrates and hydraulic oil temperatures in a production valve under a variety of operational conditions. Extensive experimental measurements and numerical modeling lead to the hypothesis that noise generation is the result of an acoustic resonance triggered by shear layer instability at the valve inlet. The pressure gradients developed when the shear layer entrains the stagnant fluid in the valve main cavity cause the layer to become unstable and oscillate. The oscillation frequency will depend on a great number of factors such as valve geometry, pressure and velocity gradients and the density and viscosity of the fluid. It is postulated that the observed noise is generated when this frequency matches one of the resonant frequencies of the valve cavity. The proposed mechanism is theoretically poorly understood and well beyond simplified analysis, its accurate numerical simulation is computational very intensive requiring sophisticated CFD codes. The numerical investigation was carried out using STAR–CCM+, a commercially available CFD code featuring 3-D capabilities and sophisticated turbulence modeling. Streamline, pressure, velocity-vector and velocity-scalar plots were obtained for several valve configurations using steady and unsteady state flow simulations. An experimental and numerical analysis of an alternative valve geometry was carried out. Experimental results demonstrated a greatly reduced instability range. The numerical analysis of the unsteady behavior of the shear-layer streamlines for both valves yielded results that were compatible with the experimental work. The results of this investigation promise a great positive impact on the design of this type of hydraulic valves.
47

Modeling and Estimation of Long Route EGR Mass Flow in a Turbocharged Gasoline Engine

Klasén, Erik January 2016 (has links)
Due to the continuous work in the automobile industry to reduce the environmental impact, reduce fuel consumption and increase efficiency, new technologies need to be developed and implemented in vehicles. For spark ignited engines, one technology that has received more attention in recent years is long route Exhaust Gas Recirculation (EGR), which means that exhaust gases after the turbine are transported back to the volume before the compressor in the air intake system of the engine. In this work, the components of the long route EGR system is modeled with mean value engine models in Simulink, and implemented in a existing Simulink engine model. Then different methods for estimating the mass flow over the long route EGR system are compared, and the transport delays for the recirculated exhaust gases in the engines air intake system are modeled. This work is based on measurements done on an engine rig, on which a long route EGR system was installed. Finally, some ideas on how a long route EGR system on a gasoline engine can be controlled are presented based on the results in this thesis work.
48

Electrical Behavior of Non-Aqueous Formulations: Role of Electrostatic Interactions in Pressurized Metered Dose Inhalers (pMDIs)

Kotian, Reshma 28 April 2008 (has links)
Aerosol electrostatics is an important property of pharmaceutical aerosols. The electrostatic properties of pMDI aerosols have been shown to be a function of both formulation and packaging components. The modified ELPI enables measurement of aerosol charge as a function of particle size, and the simultaneous determination of the mass distribution using chemical analysis. However, in order to fully assess the cause and effects of aerosol electrostatics in terms of its biological and regulatory implications, it is necessary to understand the basic charging mechanisms inside the pMDI formulation. Electrical resistivity and zeta potential measurements confirmed the presence of charged species within HFA based solutions and suspensions although the nature of these species remains unknown. These measurements were influenced by the cosolvent concentration and to a lesser extent by the presence of soluble drug and surfactant. The mean electrical resistivity of a 7% ethanol / 93% HFA 134a blend (0.83 ± 0.02 MΩ.cm) was significantly lower than that reported for HFA 134a (180 MΩ.cm). Albuterol sulfate demonstrated a positive zeta potential (75.9 ± 26.2 mV) in HFA 134a. Pilot molecular modeling studies, in conjunction with the analysis of particle interactions using HINT, provided an improved understanding of the possible interactions within albuterol sulfate HFA suspension pMDIs. The predominantly negative (-7597 ± 2063) HINT score signified unfavorable interactions between albuterol sulfate and HFA 134a molecules. Systematic investigations of the electrical properties of HFA solution and suspension pMDIs using the modified ELPI demonstrated that the electrical properties were a function of the formulation type (solution/suspension), formulation components and particle size. Experimental BDP solution pMDIs produced predominantly electropositive aerosols (net charge: 160 ± 30 pC) while albuterol sulfate pMDIs produced bipolar charged aerosol clouds (net charge: -162 ± 277 pC). Finally, the modified ELPI was recalibrated using commercially available polydisperse pMDIs as calibration aerosols with a reference Andersen cascade impactor. The mean cut-off diameters for stages 4-12 obtained following recalibration of the modified ELPI were 0.44, 0.56, 0.70, 1.01, 1.40, 2.12, 3.03, 4.75, 6.37 μm, respectively in comparison to those reported by the manufacturer (0.16, 0.27, 0.39, 0.62, 0.96, 1.62, 2.42, 4.05, 6.67 μm, respectively).
49

Modelo auto-consistente para a cinética da descarga do laser a vapor de cobre / Model self-consistent discharge kinetics copper vapor laser.

Motta, Claudio Costa 26 April 1996 (has links)
Um modelo computacional autoconsistente para a cinética da descarga em um plasma frio, fracamente ionizado, do tipo produzido em tubos de descarga, foi desenvolvido. Ele foi utilizado para investigar a dinâmica das várias propriedades do plasma, tais como temperaturas, densidades e fluxos das espécies que o compõe. Em particular, o modelo desenvolvido considera explicitamente a composição do plasma contendo várias espécies em vários estados de excitação eletrônica. Pode-se determinar a dinâmica das populações envolvidas nas transições laser do átomo de cobre, num modelo autoconsistente para lasers operando em altas taxas de repetição (-5KHz). O modelo mais completo construido considera cinco níveis para o gás tampão (Ne) e nove níveis para o átomo de cobre. O laser de cobre apresenta duas transições, uma no verde e outra no amarelo (5106 A e 5782 A), ambas terminando em estados metaestáveis de longa duração ( -270 J.LS), no átomo livre. No caso mais geral foram considerados trinta processos para determinar a dinâmica do plasma. O tratamento considera, primeiramente, somente a variação temporal e foi utilizado para estudar o plasma formado por três combinações diferentes de espécies: o gás de He puro; a mistura de He:Cu e por último a mistura Ne:Cu, correntemente utillizada em lasers a vapor de cobre. A evolução temporal da temperatura de elétrons, temperatura dos átomos e densidades das espécies, em particular a das espécies excitadas nos niveis de transição laser, pode ser determinada e os resultados comparados com resultados experimentais e de simulação reportados na literatura, mostrando boa concordância no comportamento geral. Verificou-se neste modelo que o principal mecanismo de desexcitação do nível metaestável inferior da transição laser são as colisões superelásticas e não a desativação via interação com as paredes (difusão). Após este primeiro tratamento o modelo passou a considerar também a dependência radial do plasma numa simetria cilíndrica (modelo radial). Neste caso, o efeito de penetração do campo elétrico é explicitamente considerado e o modelo pode ser aplicado tanto a tubos de pequeno como de grande diâmetro, uma vez que o diâmetro é uma grandeza fundamental para a obtenção de lasers de alta potência. Demonstrou-se que esse efeito produz uma distribuição de população dos níveis envolvidos nas duas transições laser (verde e amarela) do cobre, temporalmente distintas e crescentes da borda para o centro, o que concorda com resultados da literatura. Assim, o pulso do laser irá se iniciar com a emissão verde na borda do tubo, conforme predições de nosso modelo. Determinou-se também que existe um limite máximo para o comprimento do tubo do laser, decorrente da existência de uma janela temporal de ganho (-100 ns). / A self-consistent computational model was developed to describe the electrical discharge in a cold plasma, weakly ionized, of the kind usually produced in discharge tubes. The various properties of the species of the plasma as temperature of the electrons, its densities and fluxes could then be obtained. In particular, the model explicitly considers the plasma containing different species in different state of electronic excitation. From these quantities, one can determine the dynamics of the populations involved in the copper atomic laser transition, in a self-consistent model for lasers operation in high repetition rates (-5KHz). The most complete model developed takes into account five level for the buffer gas and nine levels for the copper atom. The copper laser shows two transitions, one in the green and other in the yellow, (5106 Å e 5782 Å), both ending in metaestable states of long duration (~270 µs), in the free atom. In the most complete case studied, thirty processes were considered in the calculations of the plasma dynamics. The formalism first considers solely the temporal dependence and it was used to study the plasma formed by three species: pure He; He and Cu; and Ne and Cu, the last one been currently used in copper vapor lasers. The time dependent populations of the electrons temperature, atoms temperature and densities, in particular the excited levels involved in the laser transitions, could be determined and the results were compared with experimental and simulated results of literature, showing a general good agreement. It was verified, in this model, that the main deexcitation mechanism of the lower metastable laser level is superelastic collisions and not deexcitation via interactions with the walls (diffusion). Therefore, the model was extended to take into account the radial dependence of the plasma in a cylindrical symmetry (radial model). In this case, the skin penetration effect of the electrical field was explicitly considered and the model can then be applied to either small and large diameters, as the diameter is a fundamental parameter for obtaining high power lasers. It is shown that this effect produces a temporally distinct population distribution in the levels of the laser transitions (yellow and green) of the copper atoms, that start in the border and goes to the center, in agreement with the literature. Therefore, the laser pulse starts with the green emission in the border, according to the prediction of our model. It was also found that there is a limit for the maximum length of the laser tube due to the existence of a time window for the positive gain of the laser (~100 ns).
50

Hydrogen cryosorption of micro-structured carbon materials

Teng, Xiao January 2017 (has links)
In comparison with the high-pressure adsorption at room temperature, hydrogen adsorption at cryogenic temperatures can be significantly improved at low pressures, which has great potential for prospective mobile applications. In this study, a differential pressure based manometry system was designed and constructed for fast analysing hydrogen adsorption uptakes of sorbents up to a maximum of 10 wt% at 77 K and up to 11 bar. The safety design of the system in compliance with European ATEX directives (Zone 2) for explosive atmospheres was discussed in detail, together with additional pneumatic systems for remote control of the experiments. A thorough error analysis of related experimental tests was also performed. Common carbon sorbents, including several Norit branded activated carbons and graphene nanoplatelets (GNPs) with various surface areas, were characterised for their pore structures. The structural differences among GPNs of different surface areas were also studied. The hydrogen adsorption isotherms of these sorbents, examined in the newly-built manometry system, were further analysed and discussed with reference to the assessed microstructural properties. The carbonisation processes of plasma carbons from the microwave splitting of methane, and biochars from the pyrolysis of Miscanthus, were intensively studied primarily based on Raman spectroscopy, in conjunction with other characterisation techniques such as XRD, FTIR and XPS, for exploring the formation of graphitic structures and crystallinity under various conditions. Two selected types of carbons, the activated carbon AC Norit GSX with a specific surface areas of 875 m2/g and the graphene nanoplates with a specific surface area of 700 m2/g, were decorated with palladium nanoparticles in different compositions. The growth and distribution of doped palladium particles in the carbon substrates were studied, and their effects on porous properties and microstructures of the sorbents were also reviewed. Hydrogen adsorption tests of the decorated carbons were further conducted and discussed, to explore the potential effects of Pd contents on the adsorption kinetics and hydrogen absolute uptakes.

Page generated in 0.0701 seconds