• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrolysis of zinc and related metal O,O-dialkyl dithiophosphates

Dewan, Sharwan Kumar January 1986 (has links)
No description available.
2

The effects of surface modification on properties of solid lubricant additives

Jiao, Yang January 2017 (has links)
Three different fine-particles (lanthanum fluoride nanoparticles, cerium oxide nanoparticles and zinc borate submicron particles) were modified and tested on the purpose of study the effects of surface modified fine-particles when they used as lubricant additives in liquid paraffin. The modified fine-particles were examined and characterised by a FT-IR spectroscopy and a zeta-potential measurer. The tribological performances of surface modified fine-particles were invalided by a pin-on-disc test rig under various experimental environments. The worn surfaces on post-tested pin were analysed by AFM, SEM and a nano-indentation tester. The results indicated Hexadecyltrimethoxysilane (HS) modified lanthanum fluoride nanoparticles and HS modified cerium oxide nanoparticles all shown better dispersibility than unmodified lanthanum fluoride nanoparticles and unmodified cerium oxide nanoparticles in liquid paraffin (LP). HS modified lanthanum fluoride nanoparticles and HS modified cerium oxide nanoparticles also have been approved that they can improve the tribological properties of LP significantly under various working conditions. The formation of tribo-films on the worn scar is the key mechanism of friction and wear reduction. On the other hand, surface modified zinc borate submicron particles have not demonstrated great potential as an oil lubricant additive under various working conditions. HS, as a particle surface modifier, could improve the performance of fine-particle oil lubricant additives impressively. The positive effects of HS on both dispersibility and tribological performance of surface modified fine-particles were observed.
3

The influence of solid additives on the tribological properties of lubricants

Zhao, Chuanli January 2013 (has links)
The present work investigates the tribological properties of solid particles as lubricant additives in lubricants. Two types of solid particles, Ceria nanoparticles (CeO2) and Zinc borate ultrafine powders (ZB UFPs), were used as the lubricant additives in this study. The friction and wear behaviours of these lubricant additives in different base lubricants were identified. With an appropriate application of these solid lubricant additives, the friction reduction and wear resistance properties of the lubricant have been successfully improved. Without assistance of surfactant or surface modification, the two types of solid particles behave very differently. Evident performance was observed that pure ZB UFPs were capable of considerably reducing the friction coefficient of sunflower oil and liquid paraffin when they were used as a lubricant additive without further treatment. On the contrary, CeO2 nanoparticles did not show noticeable contribution to friction reduction when they were used as the only additive in water. Only when surfactant Sorbitan monostearate was employed to enhance the dispersibility of CeO2 nanoparticles in water, the application of this additive was capable of reducing friction coefficient of the water based lubricant effectively. Surface modification of the solid particles was carried out to improve the dispersibility of these particles in base lubricants. Oleic acid (OA) and Hexadecyltrimethoxysilane (HDTMOS) were selected as the modification agents. Modified CeO2 nanoparticles and ZB UFPs revealed outstanding wear resistance property. An improvement of up to 15 times was identified although this improvement on wear resistance, in this case, was often companied by a rise in friction coefficient. Tribo-films generated by tribo-chemical reaction were observed on most of the worn surfaces and the formation of this tribo-film appeared to have played an important role in the friction and wear behaviours of a system. A tenacious tribo-film with good surface coverage was only generated on the worn surface when HDTMOS modified solid particles were used as lubricant additives. The mechanical properties and elemental composition of the tribo-film were studied with nano-indentation and energy-dispersive X-ray spectroscopy (EDS). Finally, based on the experimental evidence, different functionalities of CeO2 nanoparticles and ZB UFPs as solid lubricant additives were recognized.
4

Micropitting Testing and Failure Analysis of High-Performance Gear Thermoplastics and Bearing Steel

Chockalingam, Mano January 2020 (has links)
No description available.
5

Simulating the Misting of Lubricant in the Piston Assembly of an Automotive Gasoline Engine: The Effect of Viscosity Modifiers and Other Key Lubricant Components

Dyson, C.J., Priest, Martin, Lee, P.M. 08 April 2022 (has links)
Yes / The presence of lubricant droplets in the gas that flows through the piston assembly and crankcase of an internal combustion engine (generically termed oil misting) has important implications for performance, particularly lubricant supply to the upper piston assembly, oil consumption and lubricant degradation. A significant source of these droplets is thought to be oil shearing and blow-through by blow-by gas flows in the piston assembly. An experimental rig was developed to simulate the high velocity gas and lubricant film interactions at a top piston ring gap where the flow conditions are most severe. Flows of lubricant droplets were produced and characterised in terms of the proportion of the oil flow that formed droplets in the gas flow and the size distribution of the droplets produced. Considering various aspects of a commercial automotive crankcase formulation, the effect of lubricant viscosity was found to be particularly important. Of the lubricant additives evaluated, viscosity modifiers were found to have the greatest effect on the tendency to form droplets: Detailed study on a range of viscosity modifiers identified that the influence of their molecular architectures on viscoelasticity was the key mechanism.
6

Tribological Thin Films on Steel Rolling Element Bearing Surfaces

Evans, Ryan David January 2006 (has links)
No description available.

Page generated in 0.087 seconds