• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Monitoring of Lubricant Degradation with RULER and MPC

Maguire, Emma January 2010 (has links)
<p>Traditional oil analysis methods - e.g. acidity and viscosity measurements - have been used to monitor lubricant conditions. These methods can detect when the useful life of a lubricant is over but fall short when trying to gain insight on how long a lubricant in current use could last. This makes it difficult to make proactive decisions and estimate oil drain periods. Lubricants do not start to degrade until the antioxidants, which prevent from oxidation, have depleted to a certain level where they no longer can protect the base oil from degradation. During the degradation process insoluble contaminants form that can lead to sludge and varnish.</p><p>Four engine oils were oxidized using oxygen pressurized vessels and four hydraulic oils were oxidized with turbine oil stability test (TOST). At different stages of oxidation, sample aliquots were withdrawn and analysed. A blend of engine oil and biodiesel was also tested as well as a mixture of hydraulic oil and water. Samples of engine oils were also tested from a rig test running at SCANIA’s facilities in Södertälje, Sweden. The samples were evaluated with Remaining Useful Life Evaluation Routine (RULER) and Membrane Patch Colorimetry (MPC). RULER is a voltammetric method that measures the antioxidant level in a lubricant sample and MPC measure the insoluble contaminants by spectrophotometric analysis. Results from these analyses were compared to conventional methods such as acid number, viscosity, and Fourier Transform Infrared spectroscopy (FTIR).</p><p>Results from the MPC-analyses showed that this method is dependent on the type of the lubricant tested. RULER performed well for all tested lubricants. It was shown that this analyse method can predict when the lubricant is going to start to degrade due to oxidation. Tests showed that the oxidation of the lubricant starts when there are 20-25% of the antioxidants remaining.</p>
2

Monitoring of Lubricant Degradation with RULER and MPC

Maguire, Emma January 2010 (has links)
Traditional oil analysis methods - e.g. acidity and viscosity measurements - have been used to monitor lubricant conditions. These methods can detect when the useful life of a lubricant is over but fall short when trying to gain insight on how long a lubricant in current use could last. This makes it difficult to make proactive decisions and estimate oil drain periods. Lubricants do not start to degrade until the antioxidants, which prevent from oxidation, have depleted to a certain level where they no longer can protect the base oil from degradation. During the degradation process insoluble contaminants form that can lead to sludge and varnish. Four engine oils were oxidized using oxygen pressurized vessels and four hydraulic oils were oxidized with turbine oil stability test (TOST). At different stages of oxidation, sample aliquots were withdrawn and analysed. A blend of engine oil and biodiesel was also tested as well as a mixture of hydraulic oil and water. Samples of engine oils were also tested from a rig test running at SCANIA’s facilities in Södertälje, Sweden. The samples were evaluated with Remaining Useful Life Evaluation Routine (RULER) and Membrane Patch Colorimetry (MPC). RULER is a voltammetric method that measures the antioxidant level in a lubricant sample and MPC measure the insoluble contaminants by spectrophotometric analysis. Results from these analyses were compared to conventional methods such as acid number, viscosity, and Fourier Transform Infrared spectroscopy (FTIR). Results from the MPC-analyses showed that this method is dependent on the type of the lubricant tested. RULER performed well for all tested lubricants. It was shown that this analyse method can predict when the lubricant is going to start to degrade due to oxidation. Tests showed that the oxidation of the lubricant starts when there are 20-25% of the antioxidants remaining.
3

The flow of lubricant as a mist in the piston assembly and crankcase of a fired gasoline engine: The effect of viscosity modifier and the link to lubricant degradation

Dyson, C.J., Priest, Martin, Lee, P.M. 08 October 2024 (has links)
Yes / Droplet flows, termed misting, are significant lubrication flow mechanisms to, in and around the piston assembly. Therefore, these are important in piston assembly tribology and engine performance. Crankcase lubricant degradation rate has been hypothesised to be influenced by lubricant droplet flows through the piston assembly and crankcase, but not previously confirmed. Lubricant was sampled from the sump, top ring zone (TRZ), and mist and aerosol from the crankcase during an extend-ed run. The physical and chemical degradation of these samples was characterised. Droplet flows were intermediate in degradation and fuel dilution between TRZ and sump. Flows with smaller droplet sizes were more degraded that those with larger droplets. The degradation of polymers was dependent on their molecular architecture.

Page generated in 0.1079 seconds