• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 33
  • 12
  • 11
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 268
  • 138
  • 53
  • 38
  • 37
  • 37
  • 31
  • 25
  • 23
  • 22
  • 21
  • 19
  • 18
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Lubrication of sliding electrical contacts

Dreher, Roger Henry, January 1967 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1967. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
62

Stidy of lubricating characteristics of non-Newtonian lithium base greases in a cylindrical bearing

Chakrabarti, Rajat Kumar, January 1958 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1958. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 139-142).
63

An investigation of the rheological behaviour of lubricants using the optical impact viscometry technique /

Wong, Pat-lam, Patrick. January 1990 (has links)
Thesis (Ph. D.)--University of Hong Kong, 1990.
64

Effects of minimum quantity lubrication in drilling 1018 steel

Shaikh, Vasim. Boubekri, Nourredine, January 2008 (has links)
Thesis (M.S.)--University of North Texas, Dec., 2008. / Title from title page display. Includes bibliographical references.
65

Evaluation of lubricants for cold forming of steels by double-cup extrusion tests

Venkataraman, Shivakumaran B. January 2000 (has links)
Thesis (M.S.)--West Virginia University, 2000. / Title from document title page. Document formatted into pages; contains vi, 106 p. : ill. Includes abstract. Includes bibliographical references (p. 75-76).
66

The effect of electrical lubrication on the transmission of pressure in dry pressed bodies

Kamper, Oliver William. January 1935 (has links) (PDF)
Thesis (B.S.)--University of Missouri, School of Mines and Metallurgy, 1935. / The entire thesis text is included in file. Typescript. Title from title screen of thesis/dissertation PDF file (viewed June 9, 2010) Includes bibliographical references.
67

Experimental investigation in the performance of the thermohydrodynamic lubrication of reciprocating slider bearing

Wang, Nen-zi. January 1984 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1984. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 80-83).
68

The behaviour of lubricant blends in elastohydrodynamic contacts

LaFountain, Andrew Richard January 1999 (has links)
Blends of lubricant base stocks are commonly employed to produce lubricants with optimised performance. However, the influence of blending on lubricant behaviour within high pressure, mechanical contacts, particularly the film forming capacity and friction, have largely gone unstudied. This thesis examines both of these aspects for a range of base fluids and their blends. Film thickness generation and fluid friction are reviewed in the context of elastohydrodynamic (EHD) lubrication. Various models addressing the origin and mechanism of liquid viscosity are reviewed. The derivation of viscosity as a thermodynamic property is also reviewed and its relevance to the current study is discussed. Consideration is also given to two commonly accepted yet contrasting models of EHD traction, resulting in one being adopted for this research. The relationship of molecular structure to film generation is examined experimentally by studying a number of single component fluids with widely varying chemical structures. It is shown that pressure-viscosity coefficients derived from film thickness are strongly related to the respective chemical “family” of the lubricant. EHD friction (traction) measurements are also made and analysed in order to establish a reliable method for comparing the influence of fluid composition on traction. The method, based on a well regarded fluid model, allows accurate description of full fluid traction by means of the Eyring stress and pressure-viscosity coefficient in the central EHD contact. Binary blends of well-defined base fluids are studied. It is found that the pressure- viscosity coefficient, as derived by the aforementioned methods, varies nonlinearly with the composition and tends toward the lower value of the individual components, at times attaining values lower than either of the individual components.
69

Magnetic resonance studies of selected model ester traction fluids

Britton, Melanie M. January 1995 (has links)
A high-traction fluid is one of the vital components of a traction drive; a mechanism where input power is transformed into an output force when pressure and shear force are applied to the fluid. In this environment they need to withstand high pressures, temperatures and shear forces, and must be able to lubricate at the same time. So far there has been very little research relating engineering performance to molecular structure. Previous work with model hydrocarbon traction fluids has shown that molecular rigidity about the centre of the molecule appears to be important. This work has now been extended to cyclohexyl esters. A series of cyclohexyl esters was synthesised, and where possible, x-ray structures were obtained. Extensive 13C T1 and NOE relaxation data over a range of radiofrequencies and temperatures were obtained and used to calculate correlation times, for both overall and internal motion, using both the "model-free" and reduced Lorentzian models. This provided information on the rigidity of the molecules studied, In addition molecules have been modelled using molecular dynamics techniques to calculate order parameters and torsion angle distributions. ESR studies have been conducted to measure the viscosity of each fluid. A spin probe, with a similar structure to one of the molecules studied, was synthesised. This allowed complimentary correlation time measurement, and showed that the molecule rotated isotropically. Difficulties were encountered in fitting the NMR data to the motional models and the need for higher radiofrequency data is indicated, to check the validity of the models used. The NMR, ESR and molecular dynamics results did, however, provide a consistent indication of the differing rigidities and motions of these molecules.
70

Synthesis, Characterization, and Adaptability of Carbon Nanotube-Based Solid Lubricants

Church, Amelia Heather-Sarah 01 May 2010 (has links)
Solid lubricants possessing low friction coefficients, low wear rates, and long wear lives are vital for significantly increasing the life span of instruments undergoing extreme frictional wear due to harsh environments. Solid lubricants currently used in high temperatures or excess humidity, such as MoS2, WS2, graphite, or noble metals, are unable to sustain superior frictional qualities over extended amounts of time or in changing environments. To ameliorate these limiting properties, a composite solid lubricant is produced to enable the favorable frictional properties of one lubricant to overcome the lacking frictional properties of the other. This composite uses the combined materials to produce a solid lubricant that can sustain a low friction coefficient and wear rate for a longer amount of time than each individual material. MoS2 electrodeposited on to carbon nanotubes (CNTs) has a lower friction coefficient in humid (~0.16), non-humid (~0.05) and non-humid/humid cycled (~0.075-0.2) environments than either bare MoS2 or bare CNTs. Similarly, silver deposited on CNTs, by electrodeposition, electroless deposition, and sputter coating, performs better in room temperature, high temperature (500°C), and room temperature/high temperature cycling environments than either of its individual materials. Using the techniques used to produce these solid lubricant composite coatings with appealing frictional properties will provide a variety of tribological applications involving high temperature and/or high humidity environments with necessary solutions and further facilitate the improvement of solid lubricants used in other extreme environments.

Page generated in 0.0312 seconds