• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploration in the use of lucite, a plastic, as a medium for oil painting

Mackaben, Eugene Henry, 1920- January 1959 (has links)
No description available.
2

The kinetics of a methyl methacrylate polymerization initiated by the stable free radicals in irradiated polytetrafluoroethylene and properties of the resultant graft polymer

Donato, Karen Ann Ehnot. January 1987 (has links)
Thesis (Ph. D.)--Ohio University, June, 1987. / Title from PDF t.p.
3

Sequential measurement of longitudinal and shear velocities of rock samples under triaxial pressure /

Desai, Kantilal P. January 1967 (has links)
Thesis (Ph.D.)--University of Tulsa, 1967. / Bibliography: leaves 157-163.
4

Modification of bis(ditertiarybutylphosphinomethyl)benzene for improved catalyst separation and stability

Parnham, Benjamin L. January 2007 (has links)
Palladium complexes of bis(di-tert-butylphosphinomethyl)benzene (DTBPMB) show remarkably high activity as alkene methoxycarbonylation catalysts, in addition to numerous other catalytic conversions, and are currently being commercialised by Lucite in ethene methoxycarbonylation to methyl propanoate. Any large-scale exploitation of this catalyst system for heavier products, however, is likely to be hindered by catalyst-product separation problems common to homogeneous catalysts; hence modification of this catalyst system to allow facile product separation was investigated. Tethering of DTBPMB residues onto polystyrene via Suzuki-type coupling of suitable precursors onto bromopolystyrene and boronic acid functionalised polystyrene resins was investigated and the phosphine was successfully immobilised. Phosphination of the resins was not complete however and as such there is concern that other phosphine residues may be present which do not exhibit a bidentate binding motif. The synthesis of a potassium sulfonate derivative of DTBPMB (KBPMBS) was successful and immobilisation of this onto ion exchange resins was also investigated. Some preliminary results from studies into 1-octene methoxycarbonylation using palladium complexes of these resins were obtained. Supporting of this diphosphine onto silica via a sol-gel co-condensation methodology was also investigated; the synthesis of a suitably functionalised precursor containing a sulfonamide linkage was successful via protection of the diphosphine using borane. Although formation of the silica support was successful, attempts to deprotect the phosphine-borane resulted in cleavage of the ligand from the support. An alternative route to this supported ligand was attempted and others discussed. Synthesis of a suitable sol-gel precursor via alkene hydrosilation was also attempted and is discussed. Supporting of the sulfonated phosphine, KBPMBS onto silica functionalised with imidazolium tethered residues was also investigated, although complete leaching of the phosphine from the support by methanol washing was observed. Immobilisation of the synthesised KBPMBS ligand in an ionic liquid (IL) phase was investigated. Complex formation and catalytic activity were demonstrated and a positive effect on conversion was observed upon addition of carbon dioxide to the system; possibly due to the increased CO solubility within the IL phase. Efficient product separation from the IL-immobilised catalyst system was demonstrated, both by organic extraction and using supercritical carbon dioxide flow. However, poor catalyst stability under these conditions appears to present a barrier to recycling this system, with loss of conversion observed on catalyst recycling. Other attempts to immobilise the DTBPMB ligand are discussed and reduction of the sulfide derivative of DTBPMB was demonstrated using hexachlorodisilane, which could be used as a general synthetic strategy for protecting highly electron rich phosphines. It is possible that increasing the bulk of the DTBPMB ligand may increase catalyst stability and result in catalyst systems with higher turnover numbers. Therefore syntheses of bulky ligands based on the DTBPMB backbone were investigated. 1,2,4,5-tetrakis(di(tert-butyl)phosphinomethyl)benzene was successfully synthesised although palladium complexes of this showed no activity in catalytic methoxycarbonylation. Attempts to synthesise a related biphenyl-based tetraphosphine is also discussed, although isolation of this in a pure form was not achieved. Routes toward tetraphenyl and dimethyl-diphenyl functionalised derivatives of DTBPMB have also been explored, although only a monophosphine was isolated due to difficulties in obtaining an intermediate di(chloromethyl) precursor in both synthetic pathways, although this now appears to have been overcome.
5

Metal catalysed alkylation of carbonyl compounds with formaldehyde

Lorusso, Patrizia January 2015 (has links)
Formaldehyde is a chemical used widely in the manufacture of building materials. A remarkable example is represented by the Lucite two-step Alpha technology for the large scale production of methyl methacrylate (MMA), the essential building block of all acrylic-based products. Esters and ketones are important intermediates in the manufacture of acrylate esters therefore α-hydroxymethylenation of carbonyl compounds using formaldehyde as a one carbon alkylating agent and subsequent dehydration to the corresponding methylenated derivatives has been explored in the current work. We report a novel catalytic approach for the synthesis of methyl methacrylate (MMA) via one-pot α-methylenation of methyl propanoate (a chemical intermediate of the ALPHA process) with formaldehyde, generated in situ by Ru-catalysed dehydrogenation of methanol. Elucidation of the mechanism involved in the catalytic dehydrogenation of methanol along with the collateral alcohol decarbonylation reaction was gained through a combined experimental and DFT study. The development of an alternative process where anhydrous formaldehyde is produced in situ would provide a simplification over the current second step of the ALPHA technology where the formaldehyde is initially produced as formalin, subsequently dehydrated to afford anhydrous formaldehyde in order to ensure high selectivity to MMA. As an alternative approach, ketones, in particular 3-pentanone and 2-butanone, were targeted as potential substrates in order to overcome some of the problems related to competing reactions that occur at the ester group. Hydroxymethylenation, followed by dehydration and Baeyer-Villager oxidation, possibly catalysed by enzymes to reverse the normal selectivity, leads to the formation of acrylate esters. The catalytic reaction is enabled by a gold carbene hydroxide complex in such a way that the substrate undergoes C-H activation and the nascent metal alkyl acts as a nucleophile towards the electrophilic formaldehyde, supplied in the form of alcoform* (solution of paraformaldehyde in methanol).

Page generated in 0.0222 seconds