• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement et application d’une pince optique à fibres nano-structurées / Development and application of nanostructured fibers optical tweezer

Decombe, Jean-Baptiste 20 October 2015 (has links)
Les pinces optiques permettent de piéger et de manipuler des objets sans contact physique avec de la lumière et ce avec une extrême précision. Son caractère non-invasif et non-destructif en fait un outil idéal pour des applications dans des domaines tels que la biophysique et la médecine. La pince optique conventionnelle utilise un faisceau lumineux fortement focalisé par un objectif de microscope.La fibre optique est un composant très intéressant dans ce domaine puisqu'elle permet de guider la lumière et de piéger optiquement des objets sans l'utilisation de composants optiques encombrants et en limitant des étapes d'alignement. Elle donne ainsi une grande flexibilité et compacité aux pinces optiques.Dans ce contexte, l'objectif de cette thèse a été de développer une pince optique à deux fibres nano-structurées dans le but de piéger des particules de taille micro et nanométrique.Notre pince est constituée de deux fibres optiques gravées chimiquement en forme de pointe et positionnées en vis-à-vis à des distances typiques de 20 nm à 20 µm. Cette configuration à deux faisceaux contra-propagatifs permet d'annuler la pression de radiation de la lumière. Elle a l'avantage d'obtenir un piégeage efficace pour des intensités lumineuses relativement faibles. En outre, les faisceaux ne doivent pas nécessairement être fortement focalisés. Notre dispositif présente une grande souplesse grâce au contrôle in-situ de la position des fibres, l'injection de la lumière dans les fibres et la manipulation de particules individuelles sans aucun substrat.Au cours de ces travaux, nous avons démontré expérimentalement le piégeage stable et reproductible d'une ou plusieurs particules en suspension. Divers types de particules diélectriques ont été piégées, allant de la particule en polystyrène d'un micromètre à des particules luminescentes de YAG:Ce mesurant 60 nm de diamètre. Ces dernières ont été élaborées et optimisées spécifiquement pour le piégeage optique lors de ces travaux.Nous avons également mesuré les forces optiques appliquées aux particules piégées en analysant leur mouvement Brownien résiduel. Nous avons démontré que le potentiel de piégeage était harmonique, nous permettant de définir la constante de raideur optique.Enfin nous avons démontré qu'en modifiant la forme du faisceau optique d'émission, il était possible d'améliorer certaines caractéristiques de la pince. D'une part, les faisceaux quasi-Bessel qui sont très peu divergents nous ont permis de réaliser un piégeage stable et efficace à grande distance.D'autre part, l'utilisation de pointes métallisées permet de confiner le champ et d'améliorer les forces optiques tout en diminuant l'intensité lumineuse. Nous avons mis en évidence le couplage en champ proche entre deux pointes métallisées qui ont été spécialement élaborées pour la pince. Ces derniers résultats ouvrent des perspectives encourageantes pour le développement d'une pince plasmonique fonctionnant en champ proche qui est particulièrement bien adaptée pour le piégeage de nanoparticules. / Optical tweezers allow to trap and manipulate objects without any mechanical contact with light and with an extreme accuracy. This non-invasive and non-destructive technique is of large interest in many scientific domains such as biophysics and medicine. Conventional optical tweezers use a laser beam which is strongly focalised by a microscope objective.The use of optical fibers attracts increasing attention as highly flexible and compact tools for particle trapping. Fiber-based optical tweezers do not require bulky optics and require only little alignments.In this context, the objective of this thesis was to develop a dual fiber nano-tip optical tweezers in order to trap particles with micro and nano-meter sizes. Our tweezers consist of two chemically etched optical fiber tips placed in front of each other with typical gaps from 20~nm to 20~µm. This dual contra-propagative beams configuration allow to cancel light radiation pressure. Efficient trapping can thus be obtained at relative low light intensities. Moreover, strong focusing is not required. Our device present an high flexibility due to in situ optimization and control of the fibre positions and individual particle manipulation without any substrate.During our work, we experimentally demonstrated stable and reproducible trapping of one or several particles in suspension. Various dielectric particles were trapped, from one micrometer polystyrene beads to luminescent YAG:Ce particles with diameters down to 60~nm. During this thesis, the latter were specifically elaborated and optimized for the optical trapping. We also measured optical forces applied to trapped particles by analysing their residual Brownian motion. We showed the trapping potential is of harmonic shape, allowing to define its optical stiffness.vspace{10pt}Finally, by modifying the emitted optical beam shape, we were able to improve specific tweezers characteristics. On one hand, nondiffracting quasi-Bessel beams allow us to get a stable trapping at large fiber-to-fiber distances.On the other hand, the use of metallised fiber tips allows to improve the beam confinement and enhance optical forces while reducing light intensity. We proved the near-field coupling between two metallised tips which were especially elaborated in this work. Those last results open promising perspectives for the development of plasmonic tweezers working in the near-field, which are especially well adapted for nano-particles trapping.

Page generated in 0.0758 seconds