• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Infrastructure Robotics: A Trade-off Study Examining both Autonomously and Manually Controlled Approaches to Lunar Excavation and Construction

Abu El Samid, Nader 24 February 2009 (has links)
NASA‘s planned permanent return to the Moon by the year 2018 will demand advances in many technologies. Just as those pioneers who built a homestead in North America from abroad, it will be necessary to use the resources and materials available on the Moon, commonly referred to as in-situ resource utilization. In this concept study, we propose a role for autonomous, multirobot robotic precursor excavation missions that would prepare a lunar site for the arrival of astronauts, serving to establish methods of collecting oxygen, water and various other critical resources. A novel quantitative approach is presented that combines real-time 3D simulation with the use of Artificial Neural Tissues, a machine learning approach that produces autonomous controllers requiring little human supervision. Advantages of the autonomous multirobot approach to excavation over the traditional manually operated single vehicle ones are analyzed in terms of launch mass, power, efficiency, reliability, and overall mission cost.
2

Infrastructure Robotics: A Trade-off Study Examining both Autonomously and Manually Controlled Approaches to Lunar Excavation and Construction

Abu El Samid, Nader 24 February 2009 (has links)
NASA‘s planned permanent return to the Moon by the year 2018 will demand advances in many technologies. Just as those pioneers who built a homestead in North America from abroad, it will be necessary to use the resources and materials available on the Moon, commonly referred to as in-situ resource utilization. In this concept study, we propose a role for autonomous, multirobot robotic precursor excavation missions that would prepare a lunar site for the arrival of astronauts, serving to establish methods of collecting oxygen, water and various other critical resources. A novel quantitative approach is presented that combines real-time 3D simulation with the use of Artificial Neural Tissues, a machine learning approach that produces autonomous controllers requiring little human supervision. Advantages of the autonomous multirobot approach to excavation over the traditional manually operated single vehicle ones are analyzed in terms of launch mass, power, efficiency, reliability, and overall mission cost.

Page generated in 0.1071 seconds