• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An analysis of cyclic tidal deposits : statistical time series properties, extraction of earth-moon parameters, and observed intertidal sedimentation /

Coughenour, Christopher Lynn. Lacovara, Kenneth J. January 2009 (has links)
Thesis (Ph.D.)--Drexel University, 2009. / Includes abstract and vita. Includes bibliographical references (leaves 205-220).
2

Dynamics of the stratosphere, mesosphere and thermosphere

Sandford, David J. January 2008 (has links)
This thesis presents observations of the dynamical features of the stratosphere, mesosphere and lower thermosphere. These are made from various observational techniques and model comparisons. A focus of the work is the two-day wave at high latitudes in the MLT region. This has revealed significant wave amplitudes in both summer and winter. However, these waves are shown to have very different origins. Using satellite data, the summertime wave is found to be the classic quasi-two-day wave which maximises at mid-latitudes in the MLT region. The wintertime wave is found to be a mesospheric manifestation of an eastward-propagating wave originating in the stratosphere and likely generated by barotropic and baroclinic instabilities in the polar night jet. The horizontal winds from Meteor and MF radars have been used to measure and produce climatologies of the Lunar M2 tide at Esrange in the Arctic (68°N), Rothera and Davis in the Antarctic (68°S), Castle Eaton at mid-latitude (52°N) and Ascension Island at Equatorial latitudes (8°S). These observations present the longest period of lunar semi-diurnal tidal observations in the MLT region to date, with a 16-year dataset from the UK meteor radar. Comparisons with the Vial and Forbes (1994) lunar tidal model are also made which reveal generally good agreement. Non-migrating lunar tides have been investigated. This uses lunar tidal results from equatorial stations, including the Ascension Island (8°S) meteor radar. Also lunar tidal results from the Rothera meteor wind radar (68°S, 68°W) and the Davis MF radar (68°S, 78°E) are considered. Both of these stations are on the edge of the Antarctic continent. It is demonstrated that there are often consistent tidal phase offsets between similar latitude stations. This suggests that non-migrating modes are likely to be present in the lunar semi-diurnal tidal structure and have significant amplitudes.
3

Lunar Tidal Effects in the Electrodynamics of the Low-Latitude Ionosphere

Tracy, Brian David 01 May 2013 (has links)
We used extensive measurements made by the Jicamarca Unattended Long-Term Investigations of the Ionosphere and Atmosphere (JULIA) and Incoherent Scatter Radar (ISR) systems at Jicamarca, Peru during geomagnetic quiet conditions to determine the climatologies of lunar tidal effects on equatorial vertical plasma drifts. We use, for the first time, the expectation maximization (EM) algorithm to derive the amplitudes and phases of the semimonthly and monthly lunar tidal perturbations. Our results indicate, as expected, lunar tidal effects can significantly modulate the equatorial plasma drifts. The local time and seasonal dependent phase progression has been studied in much more detail than previously and has shown to have significant variations from the average value. The semimonthly drift amplitudes are largest during December solstice and smallest during June solstice during the day, and almost season independent at night. The monthly lunar tidal amplitudes are season independent during the day, while nighttime monthly amplitudes are largest and smallest in December solstice and autumnal equinox, respectively. The monthly and semimonthly amplitudes decrease from early morning to afternoon and evening to morning with moderate to large increases near dusk and dawn. We also examined these perturbation drifts during periods of sudden stratospheric warmings (SSWs). Our results show, for the first time, the enhancements of the lunar semimonthly tidal effects associated with SSWs to occur at night, as well as during the day. Our results also indicate during SSWs, monthly tidal effects are not enhanced as strongly as the semimonthly effects.

Page generated in 0.0426 seconds