Spelling suggestions: "subject:"luteinizing hormone releasing hormone"" "subject:"uteinizing hormone releasing hormone""
51 |
Investigating the mechanism of transcriptional regulation of the gonadotropin-releasing hormone receptor (GnRHR) gene by dexamethasoneVon Boetticher, S. 12 1900 (has links)
Thesis (MSc (Biochemistry))--Stellenbosch University, 2008. / Gonadotropin-releasing hormone (GnRH) acting through the cognate GnRH receptor (GnRH-R)
plays an important role in the regulation of mammalian reproductive function by regulating the
synthesis and release of follicle stimulating hormone (FSH) and luteinizing hormone (LH). The
sensitivity of pituitary gonadotropes to GnRH depends on the number of GnRH receptors present
on the gonadotrope cell surface. GnRH-R is regulated at a transcriptional, post-transcriptional and
post-translational level. Hormones such as GnRH and glucocorticoids (GCs) regulate GnRH-Rs in
a time- and dose-dependent manner. Previous studies have shown that the GnRH-R promoter
confers glucocorticoid-dependent activation via the activating protein 1 (AP-1) site in the nongonadotrope
GGH3 cell line. The mechanism by which GCs regulate the GnRH-R promoter is not
precisely known as the literature is contradictory. Therefore this study investigates the mechanism
of transcriptional regulation of the mouse GnRH-R promoter in the mouse gonadotrope cell line
LβT2, treated with the synthetic GC dexamethasone (dex). Assays used include promoter-reporter
studies, Western blotting, endogenous mRNA expression studies, electrophoretic mobility shift
assay (EMSA) as well as the in vivo chromatin immunoprecipitation (ChIP) assay. A transfected
promoter-reporter plasmid containing 600 bp of the mouse GnRH-R promoter was used to
investigate the effect of dex on transcriptional regulation. Previously it was determined in our
laboratory that the GnRH-R promoter is activated via an AP-1 binding site in the LβT2 cell line, and
is regulated in a time- and dose-dependent manner by dex. In the present study in the LβT2 cell
line a small induction was indeed seen upon dex treatment. Cotransfecting a expression vector for
rat GR succeeded in inducing a 2 fold positive dex response. Western blot analysis revealed that
GR levels remain consistent even after 8 hours dex induction. The effect of dex on the endogenous
GnRH-R gene was investigated by means of real-time RT-PCR. Dex did indeed upregulate the
gene in a time-dependant manner. Maximal induction (7.4 fold) was obtained after at least 12 hours
of dex treatment. Untreated LβT2 nuclear extracts were investigated using EMSA, for protein
binding to the mouse GnRH-R promoter AP-1 binding site, and these proteins were identified as c-
Fos and GR. This suggests that the GR interacts with the AP-1 transcription factor via a tethering
mechanism to mediate the positive dex response. The results of an in vivo ChIP assay were
consistent with this hypothesis, showing that the GR interacted with a genomic fragment containingthe AP-1 site, in response to dex. The transactivation of the GnRH-R promoter by means of the GR
tethering to AP-1 has not been shown before in the LβT2 cell line.
|
52 |
Interaction of SF-1 and Nur77 proteins from a gonadotrope cell line with the promoter of the GnRH receptor gene : implications for gene regulationSadie, Hanel 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2001. / ENGLISH ABSTRACT: The regulation of gonadotropin releasing hormone (GnRH) receptor numbers in the pituitary is a
crucial control point in reproduction. Pituitary sensitivity to GnRH can be directly correlated with
GnRH receptor levels, which can be regulated at transcriptional and post-transcriptional level. The
proximal promoter of the mouse GnRH receptor gene contains two cis elements bearing the
consensus sequence for a Steroidogenic Factor-l (SF -1) binding site. The distal site has previously
been shown to be involved in basal and tissue-specific transcriptional regulation, whereas the
function of the proximal site was not established. SF-I, a member of the nuclear receptor
superfamily of transcription factors, is involved in the transcriptional regulation of a large number
of genes involved in steroidogenesis and reproduction. The consensus SF-I binding site can serve
as a binding site for several members of the nuclear receptor superfamily. The aim of this study was
to investigate the binding of SF-I protein from the aT3-1 gonadotrope cell line to the two putative
SF-I binding sites in the mouse GnRH receptor promoter in vitro, in order to provide supporting
evidence for their functional roles in GnRH receptor gene regulation. It was shown by Western
blotting that SF-I and Nur77, another nuclear receptor transcription factor, are both expressed in
aT3-1 cells, in a manner that is influenced by cell culture conditions. Gel mobility shift assays
using specific antibodies showed that both SF-I and Nur77 protein in aT3-1 nuclear extracts bind
to both sites in a mutually exclusive fashion. As shown by competition assays using mutated
versions of the two sites, Nur77 protein had different base pair requirements than that of SF-I
protein for binding to the sites. Additionally, SF-I mRNA was shown by Northern blotting to be
increased in aT3-1 cells in response to stimulation of the Protein Kinase A (PKA) pathway by
forskolin. These results highlight unexpected degeneracy in so-called "consensus" nuclear receptor
binding sites. Furthermore, since Nur77 protein is involved in the stress response of the
hypothalamic-pituitary-adrenal (HPA) axis, the unexpected presence of Nur77 protein in a
gonadotrope cell line has potentially important implications for cross-talk between the HPA and
hypothalamic-pituitary-gonadal (HPG) axes. / AFRIKAANSE OPSOMMING: Daar bestaan 'n direkte verband tussen pituïtêre sensitiwiteit vir gonadotropien-vrystellingshormoon
(GnRH) en GnRH-reseptorvlakke Die regulering van GnRH-reseptorvlakke op transkripsionele en
post-transkripsionele vlak in die pituïtêre klier is belangrik by die beheer van voortplantingsfunksies.
Die proksimale promotor van die GnRH-reseptorgeen in die muis bevat twee cis elemente met die
konsensus volgorde vir 'n Steroidogenic Factor-l (SF-I) bindingsetel. Die distale element is betrokke
by basale en weefsel-spesifieke transkripsionele regulering, maar die funksie van die proksimale
element is nog nie vasgestel nie. SF-1 is 'n lid van die superfamilie van selkernreseptore en is betrokke
by die transkripsionele regulering van gene verantwoordelik vir steroïedogenese en voortplanting. Die
konsensus SF-I bindingsvolgorde kan dien as bindingsetel vir verskeie selkernreseptore. Ten einde 'n
beter insig ten opsigte van die regulering van die GnRH reseptorgeen te verkry, is ondersoek ingestel
na die binding van SF-I-proteïen, afkomstig van die aT3-1 pituïtêre gonadotroopsellyn, aan die twee
moontlike SF-l bindingsetels in die GnRH-reseptor promotor, in vitro. Die Western-klad metode het
getoon dat beide SF-l en Nur77, 'n ander selkernreseptor-transkripsiefaktor, in die aT3-1 sellyn
uitgedruk word. Die uitdrukking is afhanklik van selkultuurtoestande. Elektroforetiese mobiliteitsessais
met spesifieke antiliggame het getoon dat SF-l en Nur77 proteïene in aT3-1 selkernproteïenekstraksies
eksklusief aan beide bindingsetels bind. Nur77 proteïen benodig ander basispare as SF-l
proteïen om aan die bindingsetels te bind. Hierdie resultate dui op onverwagse degenerasie in
sogenaamde "konsensus" selkernreseptor-bindingsvolgordes. Die Northern-kladmetode het ook getoon
dat SF-l mRNA vlakke in aT3-1 selle styg wanneer die proteïenkinase A (PKA) pad gestimuleer word
met forskolin. Aangesien Nur77 proteïen betrokke is by die stres-respons van die hipotalamus-pituïtêre
klier-adrenale (HP A) aksis, hou die onverwagse teenwoordigheid van Nur77 proteïen in 'n
gonadotroop-sellyn potensieel belangrike inplikasies in vir kommunikasie tussen die HPA-aksis en die
hipotalamus-pituïtêre klier-gonadale (HPG) aksis.
|
53 |
The role of steroidogenic factor-1 (SF-1) in transcriptional regulation of the gonadotropin-releasing hormone (GnRH) receptor geneStyger, Gustav 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2001. / ENGLISH ABSTRACT: The GnRH receptor is a G-protein-coupled receptor in pituitary gonadotrope
cells. Binding of its ligand, GnRH, results in synthesis and release of
gonadotropin hormones luteinizing hormone (LH) and follicle stimulating
hormone (FSH). Steroidogenic factor 1 (SF-1), a transcription factor, binds
to specific sites in the promoter region of gonadotropin genes, and thus
regulates transcription of these genes. The promoter region of the GnRHreceptor
gene contains two SF-1-like binding sites, one at -14 to -8 (site 1)
and another at -247 to -239 (site 2), relative to the methionine start codon.
The role played by these two SF-1-like sites in basal transcription of the
mouse GnRH receptor (mGnRH-R) gene in a pituitary precursor
gonadotrope cell line, aT3 cells, was the first area of investigation during this
study. Luciferase reporter constructs containing 580 bp of mGnRH-R gene
promoter were prepared, where SF-1-like sites were either wildtype or
mutated. Four such constructs were made, i.e. wildtype (LG), site 1 mutant
(LGM1), site 2 mutant (LGM2) and mutated site 1 plus site 2 (LGM1/2).
These constructs were transfected into aT3 cells to determine the effect of
mutations of sites 1 and/or 2 on the basal expression of the mGnRH-R gene.
Mutation of either site 1 or site 2 had no effect on basal expression of the
mGnRH-R gene. It was found that only upon simultaneous mutation of both
sites 1 and 2, a 50% reduction in basal transcription took place. The
implications of this is that SF-1 protein seems to only require one intact
DNA-binding site, to mediate basal transcription of the mGnRH-R gene,
suggesting that these two sites lie in close proximity during basal
transcription. The effect of the protein kinase A (PKA) pathway on the
endogenous mGnRH-R gene was also investigated by incubating non- ,
transfected aT3 cells with the PKA activators, forskolin and 8-Br-cAMP.
Similar incubations were also performed on the wild type and mutated site 1
constructs transfected into pituitary gonadotrope aT3 cells. It was found that
forskolin and 8-Br-cAMP were able to increase endogenous mGnRH-R mRNA levels in a concentration-dependent fashion, showing that
endogenous GnRH receptor gene expression is stimulated via a protein
kinase A pathway. Similar results were obtained with the wildtype promoter
construct, showing that the protein kinase A pathway stimulates transcription
of the promoter. This effect was only seen with wild type and not with the
mutated site 1. These results are consistent with a role for a SF-1-like
transcription factor in mediating the protein kinase A effect via binding to the
site 1 at position -14 in the GnRH receptor gene. A separate investigation
was performed to determine whether 25-hydroxycholesterol (25-0HC) is a
ligand for SF-1, by incubating aT3 cells transfected with the various
constructs with 25-0HC. Results show a dose-dependant response, with an
increase in gene expression at 1 μM and a decrease at higher
concentrations, for both mutant and wild type constructs. This suggests that,
if SF-1 is indeed the protein binding to sites 1 and 2, then 25-0HC is not a
ligand for SF-1 protein in aT3 cells and that the effect of 25-0HC on the
mGnRH-R gene is not mediated via site 1. The results indicate that these
decreases of expression at the higher concentrations may be due to
cytotoxic effects. Towards the end of the study the laboratory obtained a
luminoskan instrument with automatic dispensing features. Optimisation
studies on the luciferase and β-Gal assays were performed on the
luminoskan in a bid to decrease experimental error. It was found that
automation of these assays resulted in a decrease in experimental error,
showing that future researchers could benefit substantially from these
optimisation studies. / AFRIKAANSE OPSOMMING: Die GnRH reseptor is 'n G proteïen-gekoppelde reseptor in pituitêre
gonadotroopselle. Binding van die ligand, GnRH, lei tot die sintese en
vrystelling van die gonadotropien hormone, luteïniserende hormoon (LH) en
follikel stimulerende hormoon (FSH). Steroidogeniese faktor-t (SF-1) is 'n
transkripsie faktor wat aan spesifieke areas in die promotergebied van die
gonadotropien hormone bind, en dus transkripsie van hierdie gene reguleer.
Die promotergebied van die GnRH reseptor geen bevat twee SF-1 bindings
areas, een by -14 to -8 (area 1) asook by -247 to -239 (area 2), relatief to die
metionien beginkodon. Die rol wat hierdie twee SF-1 areas speel in basale
transkripsie van die muis GnRH reseptor (mGnRH-R) geen in 'n pituïtêre
voorloper gonadotroop sellyn, aT3 selle, was die eerste gebied van
ondersoek gedurende hierdie studie. Plasmiede bestaande uit die 580
basispaar mGnRH-R promoter verbind aan 'n lusiferase geen is vervaardig,
waar SF-1-soortige areas enersyds onveranderd gelaat is, of gemuteer is.
Vier sulke plasmiede is vervaardig, nl. onveranderd (LG), area 1 mutant
(LGM1), area 2 mutant (LGM2) en gemuteerde area 1 plus area 2 (LGM1/2).
Hierdie plasmiede is gebruik om aT3 selle te transfekteer om die effek van
mutasies van areas 1 en/of 2 op die basale ekspressie van die mGnRH-R
geen te ondersoek. Daar is gevind dat mutasies van areas 1 of 2 geen effek
op basale ekspressie op die bogenoemde geen gehad het nie. Slegs tydens
gelyktydige mutasie van areas 1 en 2 het 'n 50% vermindering in basale
transkripsie plaasgevind. Die implikasies hiervan is dat die SF-1 proteïen
blykbaar slegs een volledige DNA-bindingsarea benodig om basale
transkripsie van die mGnRH-R geen te reguleer. Dit wil dus voorkom of
hierdie twee areas baie na aan mekaar geposisioneer is tydens basale
transkripsie. Die effek van die proteïen kinase A (PKA) roete op die natuurlike
mGnRH-R geen is ook ondersoek tydens inkubasie van nie-getransfekteerde
aT3 selle met die PKA akiveerders, forskolin en 8-Br-cAMP. Soortgelyke
inkubasie is ook gedoen op die onveranderde en gemuteerde area 1
plasmiede wat in aT3 selle getransfekteer is. Daar is gevind dat forskolin en 8-Br-cAMP daarin geslaag het om die natuurlike mGnRH-R geen mRNA
vlakke op 'n konsentrasie-afhanklike wyse te vermeerder. Hierdie resultaat
dui daarop aan dat die natuurlike mGnRH-R geen se ekspressie gestimuleer
kan word via 'n proteïen kinase A roete. Soortgelyke resultate is verkry met
die onveranderde promoter plasmied en dit wys ook daarop dat proteïen
kinase A transkripsie deur die promoter kan stimuleer. Hierdie effek was
slegs aanwesig met die onveranderde en nie met die gemuteerde area 1
plasmied nie. Die resultate stem ooreen met 'n rol vir SF-1 transkripsie faktor
in die regulering van proteren kinase A effek deur middel van binding aan die
area 1 by posisie -14 in die GnRH-R geen. 'n Afsonderlike ondersoek is
gedoen om vas te stel of 25-hidroksiecholesterol (25-0HC) 'n ligand vir SF-1
is deur getransfekteerde aT3 selle met 25-0HC te inkubeer. Resultate toon 'n
dosis-afhanklike respons met 'n verhoging in geen ekspressie by 1 μM en 'n
verlaging met hoër konsentrasies vir beide onveranderde en gemuteerde
plasmiede. Dit impliseer dat, indien SF-1 wel die faktor is wat aan areas 1 en
2 bind, 25-0HC nie die ligand vir SF-1 proteren in aT3 selle is nie en dat die
effek van 25-0HC op die mGnRH-R geen nie gereguleer word via area 1 nie.
Die verlaging in ekspressie gevind by die hoër konsentrasies is dalk die
gevolg van sitotoksiese effekte. Teen die einde van die studie het die
laboratorium luminoskan toerusting met outomatiese pipettering verkry.
Optimiseringstudies van die lusifirase en β-Galtoetse is met die luminoskan
gedoen in 'n poging om eksperimentele foute te minimaliseer. Daar is gevind
dat outomatisering van hierdie toetse wel gelei het tot 'n verlaging in
eksperimentele foute. Toekomstige navorsers kan dus grootliks voordeel trek
uit hierdie optimiseringstudies.
|
54 |
Transcriptional regulation of the mouse gonadotropin-releasing hormone receptor gene in pituitary gonadotrope cell linesSadie, Hanél 03 1900 (has links)
Thesis (PhD (Biochemistry))--University of Stellenbosch, 2006. / Gonadotropin-releasing hormone (GnRH), acting via its cognate receptor (GnRHR) is the primary
regulator of mammalian reproductive function. Pituitary sensitivity to GnRH can be directly correlated
with GnRHR levels on the surface of the pituitary gonadotrope cells, which can be regulated at
transcriptional, post-transcriptional and post-translational levels. This study investigated mechanisms
of transcriptional regulation of mouse GnRHR expression in two mouse gonadotrope cell lines, αT3-1
and LβT2, using a combination of endogenous mRNA expression studies, promoter-reporter studies, a
two-hybrid protein-protein interaction assay, Western blotting, and in vitro protein-DNA binding
studies. In the first part of the study, the role of two GnRHR promoter nuclear receptor binding sites
(NRSs) and their cognate transcription factors in basal and Protein Kinase A (PKA)-stimulated
regulation of GnRHR promoter activity was investigated in αT3-1 cells. The distal NRS was found to
be crucial for basal promoter activity in these cells. While the NRSs were not required for the PKA
response in these cells, results indicate a modulatory role for the transcription factors Steroidogenic
Factor-1 (SF-1) and Nur77 via these promoter elements. The second part of the study focused on
elucidating the mechanism of homologous regulation of GnRHR transcription in LβT2 cells, with a view
to defining the respective roles of PKA and Protein Kinase C (PKC) in the transcriptional response to
GnRH. In addition, the respective roles of the NRSs, the cyclic AMP response element (CRE) and the
Activator Protein-1 (AP-1) promoter cis elements, together with their cognate transcription factors, in
basal and GnRH-stimulated GnRHR promoter activity, were investigated. Homologous upregulation of
transcription of the endogenous gene was confirmed, and was quantified by means of real-time RTPCR.
The GnRH response of the endogenous gene and of the transfected promoter-reporter construct
required PKA and PKC activity, and the GnRH response of the promoter-reporter construct was found
to be dependent on a functional AP-1 site. Furthermore, GnRH treatment resulted in increased binding
of phosphorylated cAMP-response element binding protein (phospho-CREB) and decreased
expression and binding of SF-1 to their cognate cis elements in vitro, and stimulated a direct
interaction between SF-1 and CREB, suggesting that these events are also required for the full
transcriptional response to GnRH. This study is the first providing detail regarding the mechanism of
transcriptional regulation of GnRHR expression in LβT2 cells by GnRH. Based on results from this
study, a model has been proposed which outlines for the first time the kinase pathways, the promoter cis elements and the cognate transcription factors involved in homologous regulation of GnRHR
transcription in the LβT2 cell line. As certain aspects of this model have been confirmed for the
endogenous GnRHR gene, the model is likely to be physiologically relevant, and provides new ideas
and hypotheses to be tested in future studies.
|
55 |
The mammalian type II gonadotropin-releasing hormone receptor : cloning, distribution and role in gonadotropin gene expressionVan Biljon, Wilma 12 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2006. / ENGLISH ABSTRACT: Gonadotropin-releasing hormone (GnRH) is well known as the central regulator of the
reproductive system through its stimulation of gonadotropin synthesis and release from
the pituitary via binding to its specific receptor, known as the gonadotropin-releasing
hormone receptor type I (GnRHR-I). The gonadotropins, luteinising hormone (LH) and
follicle-stimulating hormone (FSH), bind to receptors in the gonads, leading to effects on
steroidogenesis and gametogenesis. The recent finding of a second form of the GnRH
receptor, known as the type II GnRHR or GnRHR-II, in non-mammalian vertebrates
triggered the interest into the possible existence and function of a GnRHR-II in humans.
The current study addressed this issue by investigating the presence of transcripts for a
GnRHR-II in various human tissues and cells. While it was demonstrated that antisense
transcripts for this receptor, containing sequence of only two of the three coding exons,
are ubiquitously and abundantly expressed in all tissues examined, potentially full-length
(containing all three exons), sense transcripts for a GnRHR-II were detected only in
human ejaculate. Further analysis revealed that the subset of cells in the ejaculate
expressing these transcripts is mature sperm. These findings, together with the reported
role for GnRH in spermatogenesis and reproduction led to the further analysis of the
presence of a local GnRH/GnRHR network in human and vervet monkey ejaculate or
sperm. Indeed, such a network seems to be present in humans since transcripts for
both forms of GnRH present in mammals, as well as transcripts for the GnRHR-I, are
expressed in human ejaculate. Furthermore, transcripts for the GnRHR-II are expressed
in both human and vervet monkey ejaculate. Thus, it would appear that locally produced
GnRH-1 and/or GnRH-2 in the human male reproductive tract might mediate their effects
on fertility via a local GnRHR-I, and possibly via GnRHR-II.
Remarkably, in the pituitary, LH and FSH are present in the same gonadotropes, yet
they are differentially regulated by GnRH under various physiological conditions. While
it is well established that post-transcriptional regulatory mechanisms occur, the
contribution of transcriptional regulation to the differential expression of the LHβ- and
FSHβ-subunit genes is unclear. In this study, the role of GnRH-1 and GnRH-2 via the
GnRHR-I and the GnRHR-II in transcriptional regulation of mammalian LHβ- and FSHβ
genes was determined in the LβT2 mouse pituitary gonadotrope cell-line. It is
demonstrated for the first time that GnRH-1 may affect gonadotropin subunit gene expression via GnRHR-II in addition to GnRHR-I, and that GnRH-2 also has the ability to
regulate gonadotropin subunit gene expression via both receptors. Similar to other
reports, it is shown that the transcriptional response to GnRH-1 of LHβ and FSHβ is low
(about 1.4-fold for bLHβLuc and 1.2-fold for oFSHβLuc). In addition, evidence is
supplied for the first time that GnRH-2 transcriptional regulation of the gonadotropin β
subunits is also low (about 1.5-fold for bLHβLuc and 1.1-fold for oFSHβLuc). It is
demonstrated that GnRH-1 is a more potent stimulator of bLHβ promoter activity as
compared to GnRH-2 via the GnRHR-I, yet both hormones result in a similar maximum
induction of bLHβ. However, GnRH-2 is a more efficacious stimulator of bLHβ
transcription via the GnRHR-II than GnRH-1. No discriminatory effect of GnRH-1 vs.
GnRH-2 was observed for oFSHβ promoter activity via GnRHR-I or GnRHR-II. By
comparison of the ratio of expression of transfected oFSHβ- and bLHβ promoterreporters
via GnRH-1 with that of GnRH-2, it is shown that GnRH-2 is a selective
regulator of FSHβ gene transcription. This discriminatory effect of GnRH-2 is specific for
GnRHR-I, as it is not observed for GnRHR-II, where GnRH-1 results in a greater oFSHβ-
to-bLHβ ratio. These opposite selectivities for GnRHR-I and GnRHR-II on the ratios of
oFSHβ:bLHβ promoter activity for GnRH-1 vs. GnRH-2 suggest a mechanism for fine
control of gonadotropin regulation in the pituitary by variation of relative GnRHR-I vs.
GnRHR-II levels. In addition, a concentration-dependent modulatory role for PACAP on
GnRH-1- and GnRH-2-mediated regulation of bLHβ promoter activity, via both GnRHR-I
and GnRHR-II, and of oFSHβ promoter activity, via GnRHR-I, is indicated. The
concentration-dependent effects suggest the involvement of two different signalling
pathways for the PACAP response. Together these findings suggest that transcription of
the gonadotropin genes in vivo is under extensive hormonal control that can be finetuned
in response to varying physiological conditions, which include changing levels of
GnRH-1, GnRH-2, GnRHR-I and GnRHR-II as well as PACAP. / AFRIKAANSE OPSOMMING: Gonadotropien-vrystellingshormoon (GnRH) is bekend as die sentrale reguleerder van
die voorplantingsisteem deur die stimulasie van gonadotropiensintese en -
vrystelling vanaf die pituïtêre klier via binding aan ‘n spesifieke reseptor, die
sogenaamde tipe I gonadotropien-vrystellingshormoonreseptor (GnRHR-I). Die
gonadotropiene, lutineringshormoon (LH) en follikel-stimuleringshormoon (FSH), bind
aan reseptore in die gonades waar dit steroïedogenese en gametogenese beïnvloed.
Die onlangse ontdekking van ‘n tweede vorm van die GnRH-reseptor, bekend as die tipe
II GnRHR of GnRHR-II, in nie-soogdier vertebrate het belangstelling in die moontlike
bestaan en funksie van ‘n GnRHR-II in die mens gewek. Hierdie kwessie is aangeraak
deur die teenwoordigheid van transkripte vir ‘n GnRHR-II in verskeie weefsel- en seltipes
van die mens te ondersoek. Daar is aangetoon dat nie-sin transkripte vir hierdie
reseptor, wat die DNA-opeenvolgings van slegs twee van die drie koderende eksons
bevat het, oormatig uitgedruk word in al die weefseltipes wat ondersoek is. Daarteenoor
is potensieel vollengte (bevattende al drie eksons) sin transkripte vir ‘n GnRHR-II in die
mens slegs in semen gevind. Verdere analise het getoon dat dit volwasse sperma binne
die semen is wat laasgenoemde transkripte uitdruk. Hierdie bevindinge, tesame met die
aangetoonde rol vir GnRH in spermatogenese en reproduksie het gelei tot die verdere
analise van die teenwoordigheid van ‘n lokale GnRH/GnRHR-netwerk in mens- en
blouaapsemen of -sperm. So ‘n netwerk blyk om teenwoordig te wees in die mens,
aangesien transkripte vir beide vorme van GnRH wat in soogdiere gevind word, asook
transkripte vir die GnRHR-I, in menssemen uitgedruk word. Daarbenewens word
transkripte vir die GnRHR-II uitgedruk in beide mens- en blouaapsemen. Dit wil dus
voorkom asof lokaalgeproduseerde GnRH-1 en/of GnRH-2 in die manlike
voortplantingstelsel van die mens hul effek op vrugbaarheid bemiddel via ‘n lokale
GnRHR-I, en moontlik ook via GnRHR-II.
Dit is opmerklik dat LH en FSH teenwoordig is in dieselfde gonadotroopselle van die
pituïtêre klier en tog verskillend gereguleer word deur GnRH tydens verskeie fisiologiese
kondisies. Terwyl dit bekend is dat post-transkripsionele reguleringsmeganismes
teenwoordig is, is die bydrae van transkripsionele regulering tot die differensiële
uitdrukking van die LHβ- en FSHβ-subeenheidgene minder duidelik. In hierdie studie is
die rol van GnRH-1 en GnRH-2 via die GnRHR-I en die GnRHR-II in transkripsionele regulering van soogdier-LHβ- en -FSHβ-gene in die LβT2 muis pituïtêre
gonadotroopsellyn bepaal. Dit is vir die eerste keer aangetoon dat GnRH-1 ‘n effek mag
hê op gonadotropiensubeenheid-geenuitdrukking via GnRHR-II bykomend tot GnRHR-I,
en dat GnRH-2 ook die vermoë besit om gonadotropiensubeenheid-geenuitdrukking via
beide reseptore te reguleer. Soos deur ander studies aangetoon is die transkripsionele
respons van LHβ en FSHβ tot GnRH-1 klein (ongeveer 1.4-voudig vir bLHβLuc en 1.2-
voudig vir oFSHβLuc). Verder is daar vir die eerste keer bewys gelewer dat
transkripsionele regulering van die gonadotropien β-subeenhede deur GnRH-2 ook
gering is (ongeveer 1.5-voudig vir bLHβLuc en 1.1-voudig vir oFSHβLuc). Daar is
aangetoon dat GnRH-1 ‘n sterker stimuleerder van bLHβ-promotoraktiwiteit is in
vergelyking met GnRH-2 via die GnRHR-I, hoewel beide hormone tot ‘n soortgelyke
maksimum induksie van bLHβ lei. GnRH-2 is egter ‘n meer effektiewe stimuleerder van
bLHβ-transkripsie as GnRH-1 via die GnRHR-II. Geen verskille is gevind tussen die
effekte van GnRH-1 en GnRH-2 op oFSHβ-promotoraktiwiteit via GnRHR-I of GnRHR-II
nie. Wanneer die verhouding van uitdrukking van getransfekteerde oFSHβ- en bLHβ-
promotor-verslaggewers via GnRH-1 met dié van GnRH-2 vergelyk is, is aangetoon dat
GnRH-2 ‘n selektiewe reguleerder van FSHβ-geentranskripsie is. Hierdie diskriminasieeffek
van GnRH-2 is spesifiek vir GnRHR-I aangesien dit nie vir GnRHR-II waargeneem
word nie. GnRH-1 lei tot ‘n groter oFSHβ tot bLHβ-verhouding via GnRHR-II. Hierdie
teenoorgestelde selektiwiteite van GnRHR-I en GnRHR-II op die verhoudings van
oFSHβ tot bLHβ-promotoraktiwiteit vir GnRH-1 teenoor GnRH-2 suggereer dat daar ‘n
meganisme bestaan vir die fyn regulering van gonadotropiene in die pituïtêre klier,
deurdat die relatiewe vlakke van GnRHR-I teenoor GnRHR-II gevarieer word.
Daarbenewens is ‘n konsentrasie-afhanklike moduleringsrol vir PACAP op GnRH-1- en
GnRH-2-bemiddelde regulering van bLHβ-promotoraktiwiteit aangetoon, via beide
GnRHR-I en GnRHR-II, asook op oFSHβ-promotoraktiwiteit via GnRHR-I. Hierdie
konsentrasie-afhanklike effekte dui op die betrokkenheid van twee verskillende
seinpadweë vir die PACAP-respons. Tesame suggereer hierdie bevindinge dat
transkripsie van die gonadotropiengene in vivo onder ekstensiewe hormonale kontrole is
wat verfyn kan word in respons to veranderlike fisiologiese kondisies. Laasgenoemde
sluit veranderende vlakke van GnRH-1, GnRH-2, GnRHR-I en GnRHR-II asook PACAP
in.
|
56 |
Transcriptional regulation of the gonadotropin-releasing hormone receptor (GnRHR) gene by glucocorticoidsFernandes, S. M. (Sandra Maria) 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: The gonadotropin-releasing hormone (GnRH) receptor is a G-protein-coupled receptor in the
pituitary gonadotropes and is an important control point for reproduction. GnRH binds to the
GnRH receptor (GnRHR) resulting in the synthesis and release of follicle stimulating hormone
(FSH) and luteinizing hormone (LH). The sensitivity of the pituitary to GnRH can be directly
correlated with GnRHR levels. The mouse GnRHR promoter contains three cis elements
containing binding sites for steroidogenic factor-1 (SF-1), namely site 1 (-15/-7), site 2 (-244/-
236) and site 3 (-304/-296) as well as an activator protein-1 (AP-1)-like consensus sequence
(TGAGTCA) at position –336/-330. While sites 1 and 2 and the AP-1 site have been
previously shown to be involved in regulation of transcription of the mouse GnRHR
(mGnRHR) promoter in some cell lines, the role of site 3 has not been previously
investigated. This study investigated whether transcription of the mGnRHR gene is regulated
by GnRH and glucocorticoids in the LβT2 gonadotrope pituitary cell line, and the role therein
of site 3 and the AP-1 site and their cognate proteins, using a combination of in vitro protein-
DNA binding studies and promoter-reporter assays. The role played by site 3 and the AP-1
site in basal transcription of the mGnRHR gene in LβT2 cells was the first area of
investigation during this study. Luciferase reporter plasmids containing 600 bp of the
mGnRHR promoter were used where the site 3 and AP-1 sites were either wild-type or
mutated. Two constructs were prepared from the wild-type construct, i.e. wild type (LG), site
3 mutant (m3) and AP-1 mutant (mAP-1). Transfection of LG, m3 and mAP-1 plasmids into
LβT2 cells was carried out to determine the effect of these mutations on the basal expression
of the mGnRHR gene. Mutation of site 3 resulted in a 1.5 fold increase in the transcriptional
activity of the mGnRHR promoter. This suggests that site 3 plays a role in the inhibition of
basal transcriptional levels of the mGnRHR promoter in LβT2 cells. Mutation of the AP-1 site
resulted in a 50% decrease in basal transcriptional levels of the mGnRHR promoter in LβT2
cells. This suggests that the AP-1 site is involved in positively mediating the basal
transcriptional response of the GnRHR promoter in LβT2 cells. Experiments towards the
understanding of the mechanism of the cis elements (site 3 and AP-1 site) on the mGnRHR
promoter were carried out along with the role of protein kinase A (PKA) pathways, proteins
involved and the effect of varying doses for varying times of GnRH, as well as the overexpression
of PKA and the SF-1 protein. It was found that site 3 and the AP-1 site are not
involved in the GnRH response. Results suggest that site 3 is partially involved in the PKA
response in LβT2 cells. Site 3 can bind SF-1 protein as shown via competitive electrophoretic
mobility shift assays (EMSA). When EMSA’s were performed on the AP-1 site the findings
were that the c-Fos protein was not involved in the activation of the AP-1 site. A factor was
found to bind to the AP-1 site, which did not require the intact AP-1 site, suggesting that it
could be the c-Jun protein that binds to the AP-1 site under basal conditions.
Another area that was investigated was whether the mGnRHR promoter can be regulated by
dexamethasone (dex) either via the AP-1 site or site 3. A dose and time-dependent increase in promoter activity was observed with dex. This effect appears to require site 3 and the AP-1
site, as shown by the complete loss of response when these sites were individually mutated,
consistent with a functional interaction between site 3 and the AP-1 site in LβT2 cells. / AFRIKAANSE OPSOMMING: Die gonadotropienvrystellings hormoon (GnRH) reseptor is ‘n G-proteïen-gekoppelde
reseptor in die pituitêre gonadotrope en is ’n belangrike beheerpunt vir reproduksie. GnRH
bind aan die GnRH reseptor (GnRHR) met die gevolg dat follikel stimulerende hormoon
(FSH) en luteïeniserende (LH) gesintetiseer en vrygestel word. Die sensitiwiteit van die
pituitêre klier vir GnRH kan direk met GnRHR vlakke gekorreleer word. Die muis GnRHR
promotor bevat drie cis elemente met bindingssetels vir steroïedogeniese faktor 1 (SF1),
naamlik setel 1 (-15/-7), setel 2 (-244/-236) en setel 3 (-304/-296) sowel as ’n aktiveerder
proteïen 1 (AP-1) tipe konsensus sekwens (TGAGTCA) in posisie -336/-330. Terwyl setels 1
en 2 en die AP-1 setel voorheen getoon is om by die regulering van transkripsie van die muis
GnRHR (mGnRHR) promotor in party sellyne betrokke te wees, is die rol van setel 3 nog nie
vantevore bestudeer nie. In hierdie studie is ondersoek of die transkripsie van die mGnRHR
geen deur GnRH en glukokortikoïede in die LβT2 gonadotroop pituitêre sellyn gereguleer
word, en die rol van setel 3 en die AP-1 setel en hulle binders, deur gebruik te maak van in
vitro proteïen-DNA bindings studies en promotor-verslaggewer essais. Die rol wat setel 3 en
die AP-1 setel in basale transkripsie van die mGnRHR gene in LβT2 selle gespeel het, was
die eerste onderwerp wat in hierdie studie bestudeer is. Lusiferase verslaggewer plasmiede
wat die eerste 600 bp van die mGnRHR promotor bevat het en waarin setel 3 en die AP-1
setels óf wilde tipe óf gemuteer was, is gebruik. Two konstrukte is vanaf die wilde tipe
konstruk berei, naamlik wilde tipe (LG), ’n setel 3 mutant (m3) en ’n AP-1 mutant (mAP-1).
Transfeksie van LG, m3 en mAP-1 plasmiede in LβT2 selle is deurgevoer om te bepaal wat
die effek van hierdie mutasies op die basale ekspressie van die mGnRHR gene was. Mutasie
van setel 3 het ’n 1.5-voudige toename in die transkripsionele aktiwiteit van die mGnRHR
promotor tot gevolg gehad. Dit suggereer dat setel 3 ’n rol in die inhibisie van die basale
transkripsievlakke van die mGnRHR promotor in LβT2 selle speel. Mutasie van die AP-1 setel
het tot ‘n 50% verlaging in basale transkripsievlakke van die mGnRHR promotor in LβT2 selle
gelei. Dit suggereer dat die AP-1 setel betrokke is in die positiewe bemiddeling van die basale
transkriptionele respons van die GnRHR promotor in LβT2 selle. Eksperimente wat gemik
was om die meganisme van die cis-elemente (setel 3 en die AP-1 setel) op die mGnRHR
promotor te verklaar, asook om die rol van proteïen kinase A (PKA) paaie, proteïene daarby
betrokke en die effek van varieende dosisse vir verskillende tye van GnRH, sowel as die
oorekspressie van PKA en die SF-1 proteïen, is deurgevoer. Dit is gevind dat setel 3 en die
AP-1 setel nie betrokke by die GnRH respons is nie. Die resultate suggereer dat setel 3
gedeeltelik betrokke is by die PKA respons van LβT2 selle. Setel 3 kan SF-1 proteïen bind
soos getoon deur kompeterence elektroforetiese mobiliteits verskuiwings essais (EMSA). As
EMSA’s deurgevoer is op die AP-1 setel is bevind dat die c-Fos proteïen nie betrokke is in die
aktivering van die AP-1 setel nie. ’n Faktor is gevind om aan die AP-1 setel te bind wat nie ’n
intakte AP-1 setel vereis het nie, wat gesuggereer het dat dit die c-Jun proteïen kan wees wat
aan die AP-1 setel onder basale omstandighede bind. ’n Ander area wat ondersoek is, is of die GnRHR promotor gereguleer kan word deur
deksametasoon (dex) óf via die AP-1 setel óf via setel 3. ’n Dosis en tyds-afhanklike toename
in promotor aktiwiteit is waargeneem met dex. ’n Vereiste vir hierdie effek blyk om die
teenwoordigheid van setel 3 en die AP-1 setel te wees, soos aangetoon deur die totale verlies
aan response as hierdie twee setels individueel gemuteer is, en wat weereens in
ooreenstemming met die funksionele interaksie tussen setel 3 en die AP-1 setel in LβT2 selle
is.
|
57 |
Involvement of NF-kB subunit p65 and retinoic acid receptors RARæ and RXRæ in the transcriptional regulation of the human GnRH II geneLeung, Kin-yue., 梁建裕. January 2005 (has links)
published_or_final_version / abstract / Zoology / Master / Master of Philosophy
|
58 |
Roles of activin paracrine system in the oocyte maturation of the zebrafish, Danio rerio. / CUHK electronic theses & dissertations collection / Digital dissertation consortiumJanuary 2001 (has links)
Pang Yefei. / "August 2001." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 161-197). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
59 |
Expression control of zebrafish gonadotropin receptors in the ovary. / CUHK electronic theses & dissertations collectionJanuary 2012 (has links)
卵泡刺激素(FSH)和促黃體激素(LH)是脊椎動物體內的促性腺激素(GTH)。它們通過其相應的GTH受體(GTHR)- FSH受體(FSHR)及LH/絨毛膜性腺激素受體(LHCGR),來調控雌性脊椎動物的主要性腺活動,如卵泡生成和類固醇生成。因此,GTHR的表達水平可控制卵泡細胞對於GTH的反應程度,從而影響脊椎動物的繁殖能力。 / 然而,跟哺乳動物中的資料相比,這些受體的表達調控機制在硬骨魚類中仍然很模糊。此前,我們已經證明了斑馬魚卵泡之fshr和lhcgr的表達譜差異,顯示出lhcgr的表達滯後於fshr的表達。此表達時間之差異引申出兩條有趣的問題:一)甚麼激素能分別調節fshr和lhcgr的表達? 二)這些調控的機制是甚麼?因此,我們發起本研究來解答這些問題。 / 利用培養出來的斑馬魚卵泡細胞,我們展示了雌二醇(E2)是一個有力的GTHR調控激素。雖然E2同時刺激了fshr和lhcgr的表達,但E2對於lhcgr的表達調控效力遠遠比對fshr的高。由於雌激素核受體(nER)的特異拮抗劑(ICI 182,780)能完全抵消E2的效果,表明了E2是通過傳統的nER來直接促進了lhcgr的表達。有趣的是,不能穿越細胞膜的雌二醇-牛血清白蛋白偶聯複合物(E2-BSA)能完全模仿E2的效果,因此我們的證據提出這些nER可能位於細胞膜上。此外,我們運用各種藥劑發現了多種信號分子跟E2調控GTHR的能力有關,包括cAMP、PKA、PI3K、PKC、MEK、MAPK及p38 MAPK。當中以cAMP-PKA的信號傳導最有可能在E2的雙相調控效果起了直接作用,而E2的行動也極依賴其他信號分子的允許作用。 / 除了E2,人絨毛膜促性腺激素(hCG; LH的類似物)、垂體腺苷酸環化酶激活多肽(PACAP)、表皮生長因子(EGF)和胰島素樣生長因子-I(IGF-I)也能有效地調節斑馬魚卵泡細胞的GTHR表達。hCG能大幅下調其受體lhcgr的表達,顯示hCG能令卵泡細胞對GTH脫敏。與此同時,PACAP能瞬時模仿hCG的行動,表明了PACAP很可能是hCG的瞬態下游信號。EGF是一個強烈抑制lhcgr表達的因子,而IGF-I是一個潛在的fshr表達增強因子,均說明了旁分泌因子對GTHR表達調控有關鍵作用。除了這些激素或因子的獨立調控作用,我們進一步發現了E2的效果可能會被它們覆蓋或調節。它們對nER的調控作用可能會造成這種現象。PACAP瞬時減少了esr2a及esr2b的表達量,而EGF則顯著地下調了esr2a。 / 作為第一個在硬骨魚卵巢中對GTHR調控的全面研究,它無疑豐富了我們對卵泡生成過程中GTH的功能及GTHR表達調控的認識。此外,我們成功將目前的研究平台應用於雙酚A(BPA)的研究,進一步展示了本研究平台的潛力,有助於我們未來對各種內分泌干擾物(EDC)的作用機制進行研究。 / Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are the gonadotropins (GTHs), which bind to their cognate GTH receptors (GTHRs), FSH receptor (FSHR) and LH/choriogonadotropin receptor (LHCGR), to mediate major gonadal events in female vertebrates, including folliculogenesis and steroidogenesis. The expression level of GTHRs, therefore, controls the responsiveness of follicle cells to GTHs and hence governs the vertebrate reproduction. / However, compared with the information in mammals, the expression control of these receptors in teleosts remains largely unknown. Previously, we have demonstrated the differential expression profiles of fshr and lhcgr in the zebrafish folliculogenesis, showing that lhcgr expression lags behind fshr expression. This temporal difference between fshr and lhcgr expression has raised two interesting questions: 1) What hormones regulate the differential expression of fshr and lhcgr? and 2) What are the control mechanisms of these regulations? The present study was initiated to answer these questions. / With the primary zebrafish follicle cell cultures, we demonstrated that estradiol (E2) was a potent differential regulator of GTHRs. Although E2 increased both fshr and lhcgr expression, the up-regulatory potency of E2 on lhcgr was much greater than that on fshr. E2 directly promoted lhcgr expression via classical nuclear estrogen receptors (nERs) since nER-specific antagonist (ICI 182,780) completely abolished the E2 effect. Interestingly, our evidence suggested that these nERs could be localized on the plasma membrane because the membrane-impermeable form of estrogen (E2-BSA) fully mimicked the actions of E2. Furthermore, by applying various pharmaceutical agents, we revealed the involvement of multiple signaling molecules, including cAMP, PKA, PI3K, PKC, MEK, MAPK and p38 MAPK. The cAMP-PKA pathway likely played a direct role in the biphasic actions of E2 while the E2 actions were also greatly dependent on the permissive actions of other signaling molecules. / Apart from the sex steroid E2, human chorionic gonadotropin (hCG; as a LH analogue), pituitary adenlyate cyclase-activating peptide (PACAP), epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) also significantly regulated GTHR expression in the zebrafish follicle cells. hCG drastically down-regulated its receptor, lhcgr, suggesting that hCG could desensitize the follicle cells to respond to GTH. Meanwhile, PACAP transiently mimicked the actions of hCG, indicating that PACAP was likely a transient downstream mediator of hCG. EGF was another strong suppressor of lhcgr expression while IGF-I was a potential fshr expression enhancer, which highlighted the crucial roles of paracrine factors in the regulation of GTHRs. In addition to the regulatory effect of these individual hormones or factors, we further revealed that the E2 action could be overridden or modulated by them. Their regulatory effects on the expression of nERs might contribute to this phenomenon. PACAP transiently reduced esr2a and esr2b expression while EGF significantly down-regulated esr2a. / As the first comprehensive study of GTHR regulation in the teleost ovary, the present study certainly enriched our knowledge in the functions of GTHs and the expression control of GTHRs during folliculogenesis. By applying the current research platform on the study of bisphenol A (BPA), an endocrine-disrupting chemical (EDC), the present study further highlighted the potential of this research platform to contribute to the future action mechanism studies of various EDCs. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Liu, Ka Cheuk. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 159-212). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract (in English) --- p.i / Abstract (in Chinese) --- p.iii / Acknowledgement --- p.v / Table of contents --- p.vi / List of figures and tables --- p.xii / Symbols and abbreviations --- p.xv / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- Hypothalamic-pituitary-gonadal axis / Chapter 1.1.1 --- Overview --- p.1 / Chapter 1.1.2 --- Gonadotropin-releasing hormone --- p.1 / Chapter 1.2 --- Folliculogenesis / Chapter 1.2.1 --- Structure of ovarian follicles --- p.2 / Chapter 1.2.2 --- Stages of folliculogenesis --- p.3 / Chapter 1.3 --- Gonadotropins and gonadotropin receptors / Chapter 1.3.1 --- History of teleost gonadotropin and gonadotropin receptors --- p.5 / Chapter 1.3.2 --- Structure --- p.6 / Chapter 1.3.3 --- Function --- p.7 / Chapter 1.3.4 --- GTH-GTHR specificity --- p.9 / Chapter 1.3.5 --- Signal transduction --- p.10 / Chapter 1.3.6 --- Expression profile of gonadotropin receptors --- p.11 / Chapter 1.3.7 --- Regulation of gonadotropin receptors --- p.12 / Chapter 1.4 --- Objectives and significances of the project --- p.14 / Chapter 1.5 --- Figure legends --- p.16 / Chapter 1.6 --- Figures --- p.18 / Chapter Chapter 2 --- Differential Regulation of Gonadotropin Receptors (fshr and lhcgr) by Estradiol in the Zebrafish Ovary Involves Nuclear Estrogen Receptors That Are Likely Located on the Plasma Membrane / Chapter 2.1 --- Introduction --- p.24 / Chapter 2.2 --- Materials and methods / Chapter 2.2.1 --- Animals --- p.25 / Chapter 2.2.2 --- Hormones and chemicals --- p.26 / Chapter 2.2.3 --- Primary follicle cell culture and drug treatment --- p.26 / Chapter 2.2.4 --- Ovarian fragment incubation --- p.27 / Chapter 2.2.5 --- Total RNA extraction and real-time qPCR --- p.27 / Chapter 2.2.6 --- Western blot analysis --- p.27 / Chapter 2.2.7 --- SEAP reporter gene assay --- p.28 / Chapter 2.2.8 --- Data analysis --- p.28 / Chapter 2.3 --- Results / Chapter 2.3.1 --- Differential stimulation of fshr and lhcgr expression in ovarian fragments and follicle cells by estradiol but not testosterone --- p.28 / Chapter 2.3.2 --- Potentiation of follicle cell responsiveness to hCG by E2 pretreatment --- p.30 / Chapter 2.3.4 --- Evidence for transcription but not translation-dependent up-regulation of lhcgr by E2 --- p.30 / Chapter 2.3.5 --- Evidence for the involvement of nuclear estrogen receptors but not G protein-coupled estrogen receptor 1 (Gper) in E2-stimulated lhcgr expression --- p.31 / Chapter 2.3.6 --- Evidence for possible localization of estrogen receptors on the plasma membrane --- p.32 / Chapter 2.3.7 --- MAPK dependence of E2 effect on lhcgr expression --- p.32 / Chapter 2.4 --- Discussion --- p.33 / Chapter 2.5 --- Table --- p.38 / Chapter 2.6 --- Figure legends --- p.39 / Chapter 2.7 --- Figures --- p.43 / Chapter Chapter 3 --- Signal Transduction Mechanisms of the Biphasic Estrogen Actions in the Regulation of Gonadotropin Receptors (fshr and lhcgr) in the Zebrafish Ovary / Chapter 3.1 --- Introduction --- p.50 / Chapter 3.2 --- Materials and methods / Chapter 3.2.1 --- Animals --- p.52 / Chapter 3.2.2 --- Hormones and chemicals --- p.52 / Chapter 3.2.3 --- Primary cell culture and drug treatment --- p.52 / Chapter 3.2.4 --- Total RNA extraction and real-time qPCR --- p.52 / Chapter 3.2.5 --- Fractionation of follicle cells --- p.52 / Chapter 3.2.6 --- Western blot analysis --- p.52 / Chapter 3.2.7 --- Statistical analysis --- p.53 / Chapter 3.3 --- Results / Chapter 3.3.1 --- Biphasic roles of cAMP-PKA pathway --- p.53 / Chapter 3.3.2 --- Effects of p38 MAPK inhibition --- p.54 / Chapter 3.3.3 --- Effects of PKC and PI3K inhibition --- p.54 / Chapter 3.4 --- Discussion --- p.55 / Chapter 3.5 --- Figure legends --- p.59 / Chapter 3.6 --- Figures --- p.61 / Chapter Chapter 4 --- Gonadotropin (hCG) and pituitary adenylate cyclase-activating peptide (PACAP) down-regulate basal and E2-stimulated gonadotropin receptors (fshr and lhcgr) in the zebrafish ovary via a cAMP-dependent but PKA-independent pathway / Chapter 4.1 --- Introduction --- p.66 / Chapter 4.2 --- Materials and methods / Chapter 4.2.1 --- Animals --- p.69 / Chapter 4.2.2 --- Hormones and chemicals --- p.69 / Chapter 4.2.3 --- Primary cell culture and drug treatment --- p.69 / Chapter 4.2.4 --- Total RNA extraction and real-time qPCR --- p.69 / Chapter 4.2.5 --- Statistical analysis --- p.69 / Chapter 4.3 --- Results / Chapter 4.3.1 --- Down-regulation of fshr and lhcgr by hCG --- p.69 / Chapter 4.3.2 --- Differential regulation of fshr and lhcgr by PACAP --- p.70 / Chapter 4.3.3 --- Inhibition of E2-regulated fshr and lhcgr expression by hCG --- p.71 / Chapter 4.3.4 --- Suppressive effects of PACAP on E2-induced fshr and lhcgr expression --- p.71 / Chapter 4.3.5 --- Role of cAMP in hCG and PACAP actions --- p.72 / Chapter 4.4 --- Discussion --- p.73 / Chapter 4.5 --- Figure legends --- p.78 / Chapter 4.6 --- Figures --- p.80 / Chapter Chapter 5 --- Paracrine regulation of gonadotropin receptors (fshr and lhcgr) by ovarian growth factors: epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) / Chapter 5.1 --- Introduction --- p.85 / Chapter 5.2 --- Materials and methods / Chapter 5.2.1 --- Animals --- p.88 / Chapter 5.2.2 --- Hormones and chemicals --- p.88 / Chapter 5.2.3 --- Primary cell culture and drug treatment --- p.88 / Chapter 5.2.4 --- Total RNA extraction and real-time qPCR --- p.88 / Chapter 5.2.5 --- Statistical analysis --- p.88 / Chapter 5.3 --- Results / Chapter 5.3.1 --- Biphasic down-regulation of lhcgr by EGF --- p.89 / Chapter 5.3.2 --- Evidence for EGFR involvement --- p.89 / Chapter 5.3.3 --- Minor role of MEK-MAPK3/1 pathway in the EGF effect on lhcgr expression --- p.90 / Chapter 5.3.4 --- Up-regulation of fshr by IGF-I --- p.90 / Chapter 5.3.5 --- Evidence for IGF-IR involvement --- p.91 / Chapter 5.3.6 --- Role of PI3K-Akt pathway in IGF-I action --- p.91 / Chapter 5.3.7 --- Role of EGF and EGFR in E2-induced GTHR expression --- p.91 / Chapter 5.3.8 --- Role of IGF-I and IGF-IR in E2-induced GTHR expression --- p.91 / Chapter 5.4 --- Discussion --- p.92 / Chapter 5.5 --- Figure legends --- p.98 / Chapter 5.6 --- Figures --- p.100 / Chapter Chapter 6 --- Regulation of estrogen receptor subtypes (esr1, esr2a and esr2b): a possible mechanism to modulate estradiol-stimulated lhcgr expression in the zebrafish ovary / Chapter 6.1 --- Introduction --- p.107 / Chapter 6.2 --- Materials and methods / Chapter 6.2.1 --- Animals --- p.110 / Chapter 6.2.2 --- Hormones and chemicals --- p.110 / Chapter 6.2.3 --- Staging ovarian follicles --- p.110 / Chapter 6.2.4 --- Primary cell culture and drug treatment --- p.110 / Chapter 6.2.5 --- Total RNA extraction and real-time qPCR --- p.110 / Chapter 6.2.6 --- Statistical analysis --- p.111 / Chapter 6.3 --- Results / Chapter 6.3.1 --- Expression profiles of estrogen receptors (ERs) in zebrafish folliculogenesis --- p.111 / Chapter 6.3.2 --- Homologous regulation of nERs by E2 --- p.111 / Chapter 6.3.3 --- Regulation of nERs by endocrine hormones (hCG and PACAP) --- p.112 / Chapter 6.3.4 --- Regulation of nERs by ovarian paracrine growth factors (EGF and IGF-I) --- p.112 / Chapter 6.3.5 --- Role of cAMP in nER regulation --- p.113 / Chapter 6.3.6 --- Role of PKA in nER regulation --- p.113 / Chapter 6.4 --- Discussion --- p.114 / Chapter 6.5 --- Figure legends --- p.119 / Chapter 6.6 --- Figures --- p.121 / Chapter Chapter 7 --- Estrogenic Action Mechanisms of Bisphenol A / Chapter 7.1 --- Introduction --- p.127 / Chapter 7.2 --- Materials and methods / Chapter 7.2.1 --- Animals --- p.129 / Chapter 7.2.2 --- Hormones and chemicals --- p.129 / Chapter 7.2.3 --- Primary cell culture and drug treatment --- p.129 / Chapter 7.2.4 --- Total RNA extraction and real-time qPCR --- p.129 / Chapter 7.2.5 --- Statistical analysis --- p.130 / Chapter 7.3 --- Results / Chapter 7.3.1 --- Expression of fshr and lhcgr interfered by BPA --- p.130 / Chapter 7.3.2 --- Signaling mechanism of BPA-induced lhcgr up-regulation --- p.130 / Chapter 7.3.3 --- Dependence of transcription and translation in BPA-induced lhcgr expression --- p.131 / Chapter 7.3.4 --- Evidence for the involvement of nuclear estrogen receptors in the BPA actions --- p.131 / Chapter 7.3.5 --- Interference on E2-induced lhcgr expression by BPA --- p.131 / Chapter 7.4 --- Discussion --- p.132 / Chapter 7.5 --- Figure legends --- p.136 / Chapter 7.6 --- Figures --- p.138 / Chapter Chapter 8: --- General Discussion / Chapter 8.1 --- Estradiol as a differential regulator of gonadotropin receptors --- p.143 / Chapter 8.2 --- Conserved role of estradiol with differential action mechanisms in lhcgr regulation of mammals and teleosts --- p.144 / Chapter 8.3 --- Involvement of classical estrogen receptors that are likely located on the plasma membrane --- p.145 / Chapter 8.4 --- Biphasic response of lhcgr to estradiol and the underlying signal transduction mechanisms --- p.145 / Chapter 8.5 --- Desensitization of follicle cells to gonadotropins by hCG --- p.146 / Chapter 8.6 --- Paracrine control of gonadotropin receptors by ovarian growth factors --- p.147 / Chapter 8.7 --- Interaction of the estrogen action with other endocrine and paracrine signals --- p.148 / Chapter 8.8 --- Action mechanism studies of an endocrine-disrupting chemical: bisphenol A --- p.150 / Chapter 8.9 --- Conclusion --- p.151 / Chapter 8.10 --- Figure legends --- p.153 / Chapter 8.11 --- Figures --- p.155 / References --- p.159
|
60 |
The influence of season on preovulatory events associated with estrus synchronization in dwarf goats raised in Quebec /Pierson, Janice. January 2000 (has links)
No description available.
|
Page generated in 0.109 seconds