• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 19
  • 6
  • 5
  • 1
  • Tagged with
  • 79
  • 79
  • 45
  • 40
  • 18
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dynamical Adaptive Backstepping-Sliding Mode Control of Penumatic Actuator

He, Liang 23 September 2010 (has links)
This thesis documents the development of a novel nonlinear controller for servo pneumatic actuators that give good reference tracking at low speed motion, where friction has strong effect to the system behaviors. The design of the nonlinear controller presented in this thesis is based on the formalism of Lyapunov stability theory. The controller is constructed through a dynamical adaptive backstepping-sliding mode control algorithm. The conventional Lyapunov-based control algorithm is often limited by the order of the dynamical system; however, the backstepping design concept allows the control algorithm to be extended to higher order dynamical systems. In addition, the friction is estimated on-line via the Lyapunov-based adaptive laws embedded in the controller; meanwhile, the sliding mode control provides high robustness to the system parameter uncertainties. The simulation results clearly demonstrating the improved system performance (i.e., fast response and the reduced tracking error) are presented. Finally, the integration of the controller with a Lyapunov-based pressure observer reduces the state feedback of the servo pneumatic actuator model to only the piston displacement.
12

Nonlinear control of nonholonomic mobile robot formations

Dierks, Travis, January 2007 (has links) (PDF)
Thesis (M.S.)--University of Missouri--Rolla, 2007. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 28, 2007) Includes bibliographical references.
13

Stability monitoring and analysis of online learning neural networks

Yerramalla, Sampath. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains xiii, 187 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 165-172).
14

A STABLE NEURAL CONTROL APPROACH FOR UNCERTAIN NONLINEAR SYSTEMS

MEARS, MARK JOHN 02 September 2003 (has links)
No description available.
15

Nonlinear Tracking by Trajectory Regulation Control using Backstepping Method

Cooper, David 07 October 2005 (has links)
No description available.
16

Multi-Objective Control for Physical and Cognitive Human-Exoskeleton Interaction

Beiter, Benjamin Christopher 09 May 2024 (has links)
Powered exoskeletons have the potential to revolutionize the labor workplace across many disciplines, from manufacturing to agriculture. However, there are still many barriers to adoption and widespread implementation of exoskeletons. One major research gap of powered exoskeletons currently is the development of a control framework to best cooperate with the user. This limitation is first in understanding the physical and cognitive interaction between the user and exoskeleton, and then in designing a controller that addresses this interaction in a way that provides both physical assistance towards completing a task, and a decrease in the cognitive demand of operating the device. This work demonstrates that multi-objective, optimization-based control can be used to provide a coincident implementation of autonomous robot control, and human-input driven control. A parameter called 'acceptance' can be added to the weights of the cost functions to allow for an automatic trade-off in control priority between the user and robot objectives. This is paired with an update function that allows for the exoskeleton control objectives to track the user objectives over time. This results in a cooperative, powered exoskeleton controller that is responsive to user input, dynamically adjusting control autonomy to allow the user to act to complete a task, learn the control objective, and then offload all effort required to complete the task to the autonomous controller. This reduction in effort is physical assistance directly towards completing the task, and should reduce the cognitive load the user experiences when completing the task. To test the hypothesis of whether high task assistance lowers the cognitive load of the user, a study is designed and conducted to test the effect of the shared autonomy controller on the user's experience operating the robot. The user operates the robot under zero-, full-, and shared-autonomy control cases. Physical workload, measured through the force they exert to complete the task, and cognitive workload, measured through pupil dilation, are evaluated to significantly show that high-assistance operation can lower the cognitive load experienced by a user alongside the physical assistance provided. Automatic adjustment in autonomy works to allow this assistance while allowing the user to be responsive to changing objectives and disturbances. The controller does not remove all mental effort from operation, but shows that high acceptance does lead to less mental effort. When implementing this control beyond the simple reaching task used in the study, however, the controller must be able to both track to the user's desired objective and converge to a high-assistance state to lead to the reduction in cognitive load. To achieve this behavior, first is presented a method to design and enforce Lyapunov stability conditions of individual tasks within a multi-objective controller. Then, with an assumption on the form of the input the user will provide to accomplish their intended task, it is shown that the exoskeleton can stably track an acceptance-weighted combination of the user and robot desired objectives. This guarantee of following the proper trajectory at corresponding autonomy levels results in comparable accuracy in tracking a simulated objective as the base shared autonomy approach, but with a much higher acceptance level, indicating a better match between the user and exoskeleton control objectives, as well as a greater decrease in cognitive load. This process of enforcing stability conditions to shape human-exoskeleton system behavior is shown to be applicable to more tasks, and is in preparation for validation with further user studies. / Doctor of Philosophy / Powered exoskeletons are robots that can be worn by users to physically aid them in accomplishing tasks. These robots differ in scale, from single-joint devices like powered ankle supports or lower-back braces for lifting, to large, multi-joint devices with a broad range of capabilities and potential applications. These multi-joint exoskeletons have been used in many applications such as medical rehabilitation robots, and labor-assisting devices for enhancing strength and avoiding injury. Broader use and adoption in industry could have a great positive impact on the experience of workers performing any heavy-labor tasks. There are still barriers to widespread adoption, however. When closely interacting with machinery like a powered exoskeleton, workers want guarantees of saftey, trust, and cooperation that current exoskeletons have not been able to provide. In fact, studies have shown that industrial devices capable of providing significant assistive force when accomplishing a task, also tend to impart additional, uncomfortable disturbance forces on the user. For example, a lower-body exoskeleton meant to help in lifting tasks might make the simple act of walking more difficult, both physically and mentally. There is a need for exoskeletons that are intuitively cooperative, and can provide both physical assistance towards completing a task and cognitive assistance that makes coordinating with the human user easier. In this dissertation we examine the control problem of powered exoskeletons. In the past, many powered exoskeleton controllers are direct, scripted controllers with exact objectives, or actions tied only to human input. To go beyond this, we leverage "multi-objective-control", originally designed for humanoid robots, which is capable of controlling the robot to accomplish multiple goals at the same time. This approach is the base on which a more complex controller can be created. We show first that the multi-objective control can be used to achieve human desired actions and robot autonomous control tasks at the same time, with a parameter to trade-off which actor, the human or the robot, has the priority control at that time. This framework has the capacity to allow the human to instruct the robot in tasks to accomplish, and then robot can fully mimic the user, offloading the physical effort required to accomplish the task. It is proposed that this offloading of effort from the user will also lower the cognitive load the user is under when actively commanding the exoskeleton. To test this hypothesis, a user study is conducted where human operators work with an upper-body powered exoskeleton to complete a simple reaching task. This study shows that on average, the more assistance the exoskeleton provides to the user, the lower their mental demand is. Additionally, when responding to new challenges or sudden disturbances, the robot can easily cooperate, balancing its own autonomy with the user's to allow the user to respond as they need to their changing environment, then resume active assistance when the change is resolved. Finally, to guarantee that the exoskeleton responds quickly and accurately to the user's intentions, a new strategy is derived to update the robot's internal objectives to match the users' goals. This strategy is based on the assumption that the exoskeleton knows what type of task the user is trying to complete. If this is true, then the exoskeleton can estimate the users objectives from the actions they task, and ensure assistance towards completing the task. This control design is proven in simulation, and in preparation for followup studies to evaluate the user experience of this improved strategy.
17

Design of Adaptive Block Backstepping Controllers for Uncertain Nonlinear Systems

Ou, Yi-hung 05 February 2010 (has links)
Based on the Lypunov stability theorem, a design methodology of adaptive backstepping control is proposed in this thesis for a class of multi-input systems with matched and mismatched perturbations to solve regulation problems. The systems to be controlled contain blocks¡¦ dynamic equations, hence virtual input controllers are firstly designed so that the state variables of first blocks are asymptotically stable if each virtual control input is equal to the state variable of next block. The control input is designed in the last block to ensure asymptotic stability for each state even if the perturbations exist. In addition, adaptive mechanisms are embedded in each virtual input function and control input, so that the upper bound of perturbations is not required to be known beforehand. Finally, a numerical example and a practical application are given for demonstrating the feasibility of the proposed control scheme. ­^¤åºK­n(keyword)¡Gadaptive block backstepping controller, mismatched parameter uncertainty, virtual input controller, Lyapunov stability .
18

Design of Adaptive Sliding Mode Controllers for Mismatched Perturbed Systems with Application to Underactuated Systems

Ho, Chao-Heng 25 July 2011 (has links)
A methodology of designing an adaptive sliding mode controller for a class of nonlinear systems with matched and mismatched perturbations is proposed in this thesis. A specific designed sliding surface function is presented first, whose coefficients are determined by using Lyapunov stability theorem and linear matrix inequality (LMI) optimization technique. Without requiring the upper bounds of matched perturbations, the controller with adaptive mechanisms embedded is also designed by using Lyapunov stability theorem. The proposed control scheme not only can drive the trajectories of the controlled systems reach sliding surface in finite time, but also is able to suppress the mismatched perturbations when the controlled systems are in the sliding mode, and achieve asymptotic stability. In addition, the proposed control scheme can be directly applied to a class of underactuated systems. A numerical example and a practical experiment are given for demonstrating the feasibility of the proposed control scheme.
19

Design of Adaptive Block Backstepping Controllers for Semi-Strict feedback Systems with Delays

Huang, Pei-Chia 19 January 2012 (has links)
In this thesis an adaptive backstepping control scheme is proposed for a class of multi-input perturbed systems with time-varying delays to solve regulation problems. The systems to be controlled contain n blocks¡¦ dynamic equations, hence n-1 virtual input controllers are designed from the first block to the (n-1)th block, and the backstepping controller is designed from the last block. In addition, adaptive mechanisms are embedded in each virtual input controllers and proposed controller, so that the least upper bounds of perturbations are not required to be known beforehand. Furthermore, the dynamic equations of the systems to be controlled need not satisfy strict-feedback form, and the upper bounds of the time delays as well as their derivatives need not to be known in advance either. The resultant controlled systems guarantee asymptotic stability in accordance with the Lyapunov stability theorem. Finally, a numerical example and a practical application are given for demonstrating the feasibility of the proposed control scheme.
20

Design of Decentralized Adaptive Backstepping Tracking Controllers for Large-Scale Uncertain Systems

Chang, Yu-Yi 01 February 2012 (has links)
Based on the Lyapunov stability theorem, a decentralized adaptive backstepping tracking control scheme for a class of perturbed large-scale systems with non-strict feedback form is presented in this thesis to solve tracking problems. First of all, the dynamic equations of the plant to be controlled are transformed into other equations with semi-strict feedback form. Then a decentralized tracking controller is designed based on the backstepping control methodology so that the outputs of controlled system are capable of tracking the desired signals generated from a reference model. In addition, by utilizing adaptive mechanisms embedded in the backstepping controller, one need not acquire the upper bounds of the perturbations and the interconnections in advance. The resultant control scheme is able to guarantee the stability of the whole large-scale systems, and the tracking precision may be adjusted through the design parameters. Finally, one numerical and one practical examples are demonstrated for showing the applicability of the proposed design technique.

Page generated in 0.0426 seconds