• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ADVANCES IN MODEL PREDICTIVE CONTROL

Kheradmandi, Masoud January 2018 (has links)
In this thesis I propose methods and strategies for the design of advanced model predictive control designs. The contributions are in the areas of data-driven model based MPC, model monitoring and explicit incorporation of closed-loop response considerations in the MPC, while handling issues such as plant-model mismatch, constraints and uncertainty. In the initial phase of this research, I address the problem of handling plant-model mismatch by designing a subspace identification based MPC framework that includes model monitoring and closed-loop identification components. In contrast to performance monitoring based approaches, the validity of the underlying model is monitored by proposing two indexes that compare model predictions with measured past output. In the event that the model monitoring threshold is breached, a new model is identified using an adapted closed-loop subspace identification method. To retain the knowledge of the nominal system dynamics, the proposed approach uses the past training data and current input, output and set-point as the training data for re-identification. A model validity mechanism then checks if the new model predictions are better than the existing model, and if they are, then the new model is utilized within the MPC. Next, the proposed MPC with re-identification method is extended to batch processes. To this end, I first utilize a subspace-based model identification approach for batch processes to be used in model predictive control. A model performance index is developed for batch process, then in the case of poor prediction, re-identification is triggered to identify a new model. In order to emphasize on the recent batch data, the identification is developed in order to increase the contribution of the current data. In another direction, the stability of data driven predictive control is addressed. To this end, first, a data-driven Lyapunov-based MPC is designed, and shown to be capable of stabilizing a system at an unstable equilibrium point. The data driven Lyapunov-based MPC utilizes a linear time invariant (LTI) model cognizant of the fact that the training data, owing to the unstable nature of the equilibrium point, has to be obtained from closed-loop operation or experiments. Simulation results are first presented demonstrating closed-loop stability under the proposed data-driven Lyapunov-based MPC. The underlying data-driven model is then utilized as the basis to design an economic MPC. Finally, I address the problem of control of nonlinear systems to deliver a prescribed closed-loop behavior. In particular, the framework allows for the practitioner to first specify the nature and specifics of the desired closed-loop behavior (e.g., first order with smallest time constant, second order with no more than a certain percentage overshoot, etc.). An optimization based formulation then computes the control action to deliver the best attainable closed loop behavior. To decouple the problems of determining the best attainable behavior and tracking it as closely as possible, the optimization problem is posed and solved in two tiers. In the first tier, the focus is on determining the best closed-loop behavior attainable, subject to stability and tracking constraints. In the second tier, the inputs are tweaked to possibly improve the tracking of the optimal output trajectories given by the first tier. The effectiveness of all of the proposed methods are illustrated through simulations on nonlinear systems. / Dissertation / Doctor of Philosophy (PhD)

Page generated in 0.1311 seconds