• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

From exoplanets to quasars: adventures in angular differential imaging

Johnson-Groh, Mara 15 August 2016 (has links)
Angular differential imaging provides a novel way of probing high contrast regions of our universe. Until now, its applications have been primarily localized to searching for exoplanets around nearby stars. This work presents a suite of applications of angular differential imaging from the theoretical underpinning of data reduction, to its use characterizing substellar objects, to a new application looking for the host galaxies of damped Lyman α systems which are usually lost in the glare of ultra-bright quasars along the line of sight. The search for exoplanets utilizes angular differential imaging and relies on complex algorithms to remove residual speckles and artifacts in the images. One such algorithm, the Template Locally Optimized Combination of Images (TLOCI), uses a least-squares method to maximize the signal-to-noise ratio and can be used with variable parameters, such as an input spectral template, matrix inversion method, aggressivity and unsharp mask size. Given the large volume of image sequences that need to be processed in any exoplanet survey, it is important to find a small set of parameters that can maximize detections for any conditions. Rigorous testing of these parameters were done with on-sky images and simulated inserted planets to find the optimal combination of parameters. Overall, a standard matrix inversion, along with two to three input templates, a modest aggressivity of 0.7 and the smallest unsharp mask was found to be the best choice to balance optimal detection. Beyond optimizations, TLOCI has been used in conjunction with angular differential imaging to characterize substellar objects in our local solar neighbourhood. In particular, the star HD 984 was imaged as a part of the Gemini Planet Imager Exoplanet Survey. Although previously known to have a substellar companion, new imaging presented here in the H and J bands help further characterize this object. Comparisons with a library of brown dwarf spectral types found a best match to HD 984 B of a type M7±2. Orbital fitting suggests an 18 AU (70 year) orbit, with a 68% confidence interval between 12 and 27 AU. Object magnitude was used to find the luminosity, mass and temperature using DUSTY models. Although angular differential imaging has proven its value in high contrast imaging, it has largely remained in the field of substellar object detection, despite other high contrast regimes in which it could be applied. One potential application is outside the local solar neighbourhood with studies of damped Lyman α systems, which have struggled to identify host galaxies thought to be caused by systems seen in the spectra of bright quasars. Work herein presents the first application of angular differential imaging to finding the host galaxies to damped Lyman α systems. Using ADI we identified three potential systems within 30kpc of the sightline of the quasar and demonstrate the potential for future imaging of galaxies at close separations. In summary, this thesis presents a comprehensive look at multiple aspects of high contrast angular differential imaging. It explores optimizations with a data reduction algorithm, implementations characterizing substellar objects, and new applications imaging galaxies. / Graduate
2

Luminosity Function of Lyman-alpha Emitters at the Reionization Epoch: Observations & Theory

January 2011 (has links)
abstract: Galaxies with strong Lyman-alpha (Lya) emission line (also called Lya galaxies or emitters) offer an unique probe of the epoch of reionization - one of the important phases when most of the neutral hydrogen in the universe was ionized. In addition, Lya galaxies at high redshifts are a powerful tool to study low-mass galaxy formation. Since current observations suggest that the reionization is complete by redshift z~ 6, it is therefore necessary to discover galaxies at z > 6, to use their luminosity function (LF) as a probe of reionization. I found five z = 7.7 candidate Lya galaxies with line fluxes > 7x10-18 erg/s/cm/2 , from three different deep near-infrared (IR) narrowband (NB) imaging surveys in a volume > 4x104Mpc3. From the spectroscopic followup of four candidate galaxies, and with the current spectroscopic sensitivity, the detection of only the brightest candidate galaxy can be ruled out at 5 sigma level. Moreover, these observations successfully demonstrate that the sensitivity necessary for both, the NB imaging as well as the spectroscopic followup of z~ 8 Lya galaxies can be reached with the current instrumentation. While future, more sensitive spectroscopic observations are necessary, the observed Lya LF at z = 7.7 is consistent with z = 6.6 LF, suggesting that the intergalactic medium (IGM) is relatively ionized even at z = 7.7, with neutral fraction xHI≤ 30%. On the theoretical front, while several models of Lya emitters have been developed, the physical nature of Lya emitters is not yet completely known. Moreover, multi-parameter models and their complexities necessitates a simpler model. I have developed a simple, single-parameter model to populate dark mater halos with Lya emitters. The central tenet of this model, different from many of the earlier models, is that the star-formation rate (SFR), and hence the Lya luminosity, is proportional to the mass accretion rate rather than the total halo mass. This simple model is successful in reproducing many observable including LFs, stellar masses, SFRs, and clustering of Lya emitters from z~ 3 to z~ 7. Finally, using this model, I find that the mass accretion, and hence the star-formation in > 30% of Lya emitters at z~ 3 occur through major mergers, and this fraction increases to ~ 50% at z~7. / Dissertation/Thesis / Ph.D. Astrophysics 2011

Page generated in 0.0697 seconds