• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The computational modelling of collecting lymphatic vessels

Macdonald, Alison January 2008 (has links)
This thesis details a 1-d model of a lymphatic vessel, developed from a model by Reddy. Some additions to the modelling techniques were found to be necessary to prevent numerical phenomena not found in experiment. Furthermore the details of the wall and valve were important to the mechanics of the system. This developed model presents flow characteristics which are not represented in the existing lumped parameter or 1-d models of the lymphatic system. Additional terms allow more realistic representation of some modes of flow such as those occurring during collapse. The model was validated using Poiseuille flow calculations and experimental work. Features found in experiment were reproduced in the model. Such as the shark tooth shape of the radius time graph. A study of the sensitivity of the model to experimental parameters was performed. Features that increased flow included: increased compliance of the vessel, a larger diameter, amplitude of contraction or frequency, or a faster contraction wave. A lumped parameter model, relating the radius directly to the pressure, was investigated but this did not reproduce flow features such as the shark tooth shaped radius with time relationship or the radius peak at the beginning of a contraction or passive relaxation of the vessel. In the 1-d model the time constant of this passive relaxation increased with the magnitude of contraction. This value may have physiological relevance.
2

Defective lymphatic valve development and chylothorax in mice with a lymphatic-specific deletion of Connexin43.

Munger, Stephanie J, Davis, Michael J, Simon, Alexander M 15 January 2017 (has links)
Lymphatic valves (LVs) are cusped luminal structures that permit the movement of lymph in only one direction and are therefore critical for proper lymphatic vessel function. Congenital valve aplasia or agenesis can, in some cases, be a direct cause of lymphatic disease. Knowledge about the molecular mechanisms operating during the development and maintenance of LVs may thus aid in the establishment of novel therapeutic approaches to treat lymphatic disorders. In this study, we examined the role of Connexin43 (Cx43), a gap junction protein expressed in lymphatic endothelial cells (LECs), during valve development. Mouse embryos with a null mutation in Cx43 (Gja1) were previously shown to completely lack mesenteric LVs at embryonic day 18. However, interpreting the phenotype of Cx43(-/-) mice was complicated by the fact that global deletion of Cx43 causes perinatal death due to heart defects during embryogenesis. We have now generated a mouse model (Cx43(∆LEC)) with a lymphatic-specific ablation of Cx43 and show that the absence of Cx43 in LECs causes a delay (rather than a complete block) in LV initiation, an increase in immature valves with incomplete leaflet elongation, a reduction in the total number of valves, and altered lymphatic capillary patterning. The physiological consequences of these lymphatic changes were leaky valves, insufficient lymph transport and reflux, and a high incidence of lethal chylothorax. These results demonstrate that the expression of Cx43 is specifically required in LECs for normal development of LVs.
3

Morphogenesis of Lymphatic Vascular Networks: Insights from Connexin and Foxc2 Knockout Mice

Kanady, John January 2014 (has links)
To maintain human health, the lymphatic system requires a structurally and functionally sound network of lymph vessels to absorb lipid-based nutrients, preserve extracellular fluid homeostasis, and mediate immune responses. Aside from lymphedema, investigations in the past few decades have found that impairment of the lymphatic vasculature is also involved in processes such as inflammation, tumor metastasis, fat metabolism, and obesity. However, despite a long history of study and rekindled vigor in the field of lymphatic vascular research, our knowledge of lymph vessel development and physiology is still quite limited. Recently, mutations in a protein family known as connexins (Cxs) were identified as the cause of lymphatic dysfunction in some cases of inherited lymphedema. This dissertation explores the role of primarily two specific connexins, Cx37 and Cx43, and the transcription factor Foxc2 in the morphogenesis and function of the lymphatic vasculature in mice. To accomplish this, phenotypic characterization of mice with genetic deficiencies (knockout mice) in Cx37, Cx43, and/or Foxc2 was performed principally via necropsy, histological techniques (immuno-fluorescence microscopy and H&E staining), and Evans blue dye (EBD) injections. Developmental abnormalities were found in lymphatic vascular growth, patterning, and remodeling in mice lacking Cx37, Cx43, Foxc2 or a combined deficiency of these proteins. Reductions or complete loss of lymphatic valves were a common finding in mice lacking one or more of these proteins. These valve deficits underlay lymphatic insufficiencies that resulted in lymphedema and chylothorax in some genotypes. Foxc2 was found to be a regulator of Cx37 expression. Moreover, Foxc2 was also dependent on Cx37 function for proper morphogenesis of lymph vessels. These findings pertaining to the expression of connexins in the lymphatic vasculature, their role in lymphatic valvulogenesis, and the interdependence of Cx37 and Foxc2 during lymph-vascular development represent my original contributions to human knowledge.

Page generated in 0.0544 seconds