• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expression and characterization of a human lysosomal enzyme α-iduronidase in tobacco BY-2 cells. / Expression & characterization of a human lysosomal enzyme α-iduronidase in tobacco BY-2 cells / Expression and characterization of a human lysosomal enzyme alpha-iduronidase in tobacco BY-2 cells

January 2006 (has links)
Fu Lai Hong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 106-110). / Abstracts in English and Chinese. / Thesis/Assessment Committee --- p.ii / Statement --- p.iii / Acknowledgements --- p.iv / Abstract --- p.v / 摘要 --- p.vi / Lists of Figures --- p.x / Lists of Tables --- p.xiii / List of Abbreviations --- p.xiv / Amino acid abbreviation --- p.xvi / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter 1.1 --- Human α-L-iduronidase (hIDUA) --- p.2 / Chapter 1.1.1 --- Lysosomal storage disease --- p.2 / Chapter 1.1.2 --- Treatments of MPS 1 --- p.4 / Chapter 1.2 --- Plant cells as bioreactors --- p.5 / Chapter 1.3 --- The Plant secretary pathway --- p.7 / Chapter 1.3.1 --- Transport of soluble proteins --- p.9 / Chapter 1.3.2 --- Transport of integral membrane proteins --- p.10 / Chapter 1.4 --- Differences between plant and human proteins --- p.11 / Chapter 1.5 --- Reducing the differences between plant and human proteins --- p.12 / Chapter 1.6 --- Previous study: Expression of IDUA in transgenic tobacco plant --- p.13 / Chapter 1.7 --- Project objectives --- p.14 / Chapter 1.8 --- Long term significance --- p.14 / Chapter Chapter 2 --- Materials and Methods --- p.15 / Chapter 2.1 --- Introduction --- p.16 / Chapter 2.2 --- Materials --- p.18 / Chapter 2.2.1 --- Chemical --- p.18 / Chapter 2.2.2 --- Plant materials --- p.18 / Chapter 2.2.3 --- Plasmid vectors and bacterial strains --- p.18 / Chapter 2.2.4 --- Human a-iduronidase (hIDUA) cDNA --- p.19 / Chapter 2.2.5 --- Primers --- p.20 / Chapter 2.3 --- Methods --- p.22 / Chapter 2.3.1 --- Generation of IDUA antibodies --- p.22 / Chapter 2.3.1.1 --- Synthetic peptide raised IDUA antibodies --- p.23 / Chapter 2.3.1.1.1 --- Design of synthetic peptides --- p.23 / Chapter 2.3.1.1.2 --- Immunization of rabbits --- p.25 / Chapter 2.3.1.2 --- E. coli-derived rhIDUA protein --- p.25 / Chapter 2.3.1.2.1 --- Cloning and expression of rhIDUA --- p.25 / Chapter 2.3.1.2.2 --- Western analysis of E. coli-derived rhIDUA --- p.29 / Chapter 2.3.1.2.3 --- MS/MS analysis of rhIDUA protein --- p.29 / Chapter 2.3.1.2.4 --- Immunization of rabbits --- p.31 / Chapter 2.3.2 --- Affinity-purified antibodies --- p.33 / Chapter 2.3.3 --- Characterization of affinity-purified IDUA antibodies --- p.33 / Chapter 2.3.4 --- Construction of chimeric gene constructs --- p.34 / Chapter 2.3.5 --- Expression of IDUA in tobacco BY-2 cells --- p.39 / Chapter 2.3.5.1 --- Electropoartion of Agrobacteria --- p.39 / Chapter 2.3.5.2 --- Agrobacterium-mediated transformation --- p.39 / Chapter 2.3.5.3 --- Screening of positive trans formants --- p.40 / Chapter 2.3.6 --- Characterization of transgenic BY-2 cell expressing IDUA fusion --- p.40 / Chapter 2.3.6.1 --- Genomic DNA polymerase chain reaction (Genomic DNA PCR) --- p.40 / Chapter 2.3.6.1.1 --- Genomic DNA extraction from BY-2 callus --- p.40 / Chapter 2.3.6.1.2 --- Genomic DNA PCR of tobacco BY-2 callus --- p.41 / Chapter 2.3.6.2 --- Reverse transcription-PCR (RT-PCR) --- p.42 / Chapter 2.3.6.2.1 --- Total RNA extraction from BY-2 cell --- p.42 / Chapter 2.3.6.2.2 --- RT-PCR of BY-2 cell --- p.42 / Chapter 2.3.6.3 --- Western blot analysis of BY-2 cell and medium --- p.43 / Chapter 2.3.6.3.1 --- Protein extraction from tobacco BY-2 cells and culture medium --- p.43 / Chapter 2.3.6.3.2 --- Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) --- p.44 / Chapter 2.3.6.3.3 --- Immunodetection and Coomassie blue stain --- p.44 / Chapter 2.3.7 --- Purification of IDUA from culture media --- p.46 / Chapter Chapter 3 --- Results --- p.47 / Chapter 3.1 --- Generation of IDUA antibodies --- p.48 / Chapter 3.1.1 --- Cloning and expression of rhIDUA in E. coli --- p.48 / Chapter 3.1.2 --- Characterization of IDUA antibodies --- p.51 / Chapter 3.1.2.1 --- Specificity of IDUA antibodies towards hIDUA protein. --- p.51 / Chapter 3.1.2.2 --- Cross-reactivity of IDUA antibodies with wild type tobacco BY-2 cell --- p.55 / Chapter 3.2 --- Chimeric gene constructs construction and confirmation --- p.58 / Chapter 3.3 --- Screening of transformed tobacco BY-2 callus with kanamycin-resistance --- p.66 / Chapter 3.4 --- Genomic DNA PCR screening of transformed tobacco BY-2 callus . --- p.67 / Chapter 3.5 --- RT-PCR screening of transformed BY-2 cells --- p.70 / Chapter 3.6 --- Western blot analysis of transformed tobacco BY-2 cells and culture media --- p.72 / Chapter 3.6.1 --- Tobacco BY-2 cells --- p.72 / Chapter 3.6.2 --- Tobacco BY-2 cell culture media --- p.76 / Chapter 3.7 --- Purification of IDUA protein in culture media --- p.81 / Chapter Chapter 4 --- Discussion --- p.82 / Chapter Chapter 5 --- Summary and Future Perspectives --- p.89 / Chapter 5.1 --- Summary --- p.90 / Chapter 5.2 --- Future perspectives --- p.92 / Appendix Identification and Characterization of an Unknown Protein by 1B Antibody --- p.93 / Chapter 6.1 --- Introduction --- p.94 / Chapter 6.2 --- Objectives --- p.94 / Chapter 6.3 --- Materials and Methods --- p.95 / Chapter 6.3.1 --- Western blot analysis of different plant species --- p.95 / Chapter 6.3.2 --- Subcellular localization of the unknown protein --- p.95 / Chapter 6.3.3 --- Affinity-purification of the unknown protein --- p.95 / Chapter 6.4 --- Results --- p.97 / Chapter 6.4.1 --- Western blot analysis of different plant species --- p.97 / Chapter 6.4.2 --- Subcellular localization of an unknown protein --- p.98 / Chapter 6.4.3 --- Affinity-purification of 1B protein --- p.104 / Chapter 6.5 --- Summary and Future Perspectives --- p.105 / Chapter 6.5.1 --- Summary --- p.105 / Chapter 6.5.2 --- Future Perspectives --- p.105 / References --- p.106
2

Membrane anchor for vacuolar targeting: expression of a human lysosomal enzyme iduronidase (hIDUA) in transgenic tobacco plants.

January 2005 (has links)
Seto Tai Chi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 122-138). / Abstracts in English and Chinese. / Thesis Committee --- p.ii / Statement --- p.iii / Acknowledgements --- p.iv / Abstract (in English) --- p.v / Abstract (in Chinese) --- p.vii / Table of Contents --- p.ix / List of Tables --- p.xvi / List of Figures --- p.xv / Chapter Chapter 1 --- General Introduction and Literature Review --- p.1 / Chapter 1.1 --- Introduction --- p.2 / Chapter 1.2 --- Tobacco seed as bioreactor --- p.4 / Chapter 1.2.1 --- Advantages of using tobacco seed to produce bioactive human lysosomal enzyme --- p.4 / Chapter 1.2.2 --- Disadvantages and potential problems of using tobacco seed to produce bioactive human lysosomal enzyme --- p.5 / Chapter 1.2.2.1 --- Difference of asparagine-linked N-glycosylation between plant and human protein --- p.8 / Chapter 1.2.2.2 --- Immunogenicity of recombinant protein with plant-derived N-glycan to human --- p.10 / Chapter 1.2.2.3 --- "Strategy to ""humanize"" plant-derived recombinant human lysosomal enzyme" --- p.10 / Chapter 1.2.2.4 --- Lack of specific glycan structure一mannose-6-phosphate (M6P) tag addition --- p.11 / Chapter 1.2.2.5 --- Strategy for M6P tag addition on plant-derived human lysosomal enzyme --- p.12 / Chapter 1.3 --- The plant secretory pathway --- p.13 / Chapter 1.3.1 --- Plant vacuole in tobacco seed --- p.16 / Chapter 1.3.2 --- Soluble protein trafficking in plant cell --- p.17 / Chapter 1.3.3 --- Integral membrane protein trafficking in plant cell --- p.17 / Chapter 1.3.4 --- Components involved in integral membrane protein trafficking to PSV crystalloid --- p.19 / Chapter 1.3.4.1 --- BP-80 (80-kDa binding protein) --- p.19 / Chapter 1.3.4.2 --- α-TIP (α-tonoplast intrinsic protein) --- p.20 / Chapter 1.3.5 --- Using specific integral membrane protein trafficking system to target recombinant human lysosomal enzyme to tobacco seed PSV --- p.21 / Chapter 1.4 --- Homo sapiens α-L-iduronidase (hIDUA) --- p.21 / Chapter 1.4.1 --- Global situation of lysosomal storage disease一hIDUA deficiency --- p.21 / Chapter 1.4.2 --- Physiological role --- p.22 / Chapter 1.4.3 --- Molecular property --- p.24 / Chapter 1.4.3.1 --- Mutation and polymorphism --- p.24 / Chapter 1.4.4 --- Lysosomal secretory pathway --- p.24 / Chapter 1.4.5 --- Biochemical property --- p.25 / Chapter 1.4.6 --- Clinical application --- p.27 / Chapter 1.4.6.1 --- Enzyme replacement therapy (ERT) --- p.27 / Chapter 1.4.6.2 --- Clinical trial --- p.28 / Chapter 1.4.6.3 --- Economic value --- p.29 / Chapter 1.4.7 --- Expression system --- p.29 / Chapter 1.4.7.1 --- Production (overexpression) of rhIDUA in CHO cell system --- p.30 / Chapter 1.4.7.2 --- Production of rhIDUA in tobacco plant leaf --- p.30 / Chapter 1.5 --- Project objective and long-term significance --- p.30 / Chapter 1.5.1 --- Project objective --- p.30 / Chapter 1.5.2 --- Long-term significance --- p.31 / Chapter Chapter 2 --- Generation and Characterization of Anti-IDUA Antibodies --- p.32 / Chapter 2.1 --- Introduction --- p.33 / Chapter 2.2 --- Materials --- p.33 / Chapter 2.2.1 --- Chemical --- p.33 / Chapter 2.3 --- Methods --- p.35 / Chapter 2.3.1 --- Generation of polyclonal anti-IDUA antibody --- p.35 / Chapter 2.3.1.1 --- Design of synthetic peptide --- p.35 / Chapter 2.3.1.2 --- Conjugation of synthetic peptide to carrier protein --- p.39 / Chapter 2.3.1.3 --- Immunization of rabbit --- p.39 / Chapter 2.3.2 --- Characterization of polyclonal anti-IDUA antibody in rabbit serum --- p.40 / Chapter 2.3.2.1 --- Dot-blot analysis --- p.40 / Chapter 2.3.3 --- Purification of polyclonal anti-IDUA antibody --- p.42 / Chapter 2.3.3.1 --- Construction of anti-IDUA antibody affinity column --- p.42 / Chapter 2.3.3.2 --- Affinity-purification of anti-IDUA antibody --- p.42 / Chapter 2.3.4 --- Western blot detection of denatured rhIDUA --- p.42 / Chapter 2.4 --- Results --- p.43 / Chapter 2.4.1 --- Characterization of polyclonal anti-IDUA antibody --- p.43 / Chapter 2.5 --- Discussion --- p.51 / Chapter 2.6 --- Conclusion --- p.51 / Chapter Chapter 3 --- Generation and Characterization of Transgenic Tobacco Plants Expressing rhIDUA Fusions --- p.52 / Chapter 3.1 --- Introduction --- p.53 / Chapter 3.1.1 --- Signal peptide of hIDUA (hIDUA SP) --- p.54 / Chapter 3.1.2 --- Signal peptide of proaleurain (Pro. SP) --- p.54 / Chapter 3.1.3 --- Hypothesis to be tested in this study --- p.54 / Chapter 3.2 --- Materials --- p.55 / Chapter 3.2.1 --- Chemical --- p.55 / Chapter 3.2.2 --- Primers --- p.55 / Chapter 3.2.3 --- Bacterial strain --- p.58 / Chapter 3.2.4 --- The insert-Homo sapiens α-L-iduronidase (hIDUA) cDNA used in this study --- p.58 / Chapter 3.2.5 --- The vector-pLJ526 used in this study --- p.59 / Chapter 3.3 --- Methods --- p.61 / Chapter 3.3.1 --- Construction of chimeric gene construct --- p.61 / Chapter 3.3.1.1 --- Restriction endonuclease´ؤPfIMIl --- p.61 / Chapter 3.3.1.2 --- Recombinant DNA and molecular cloning techniques used in this study --- p.61 / Chapter 3.3.1.3 --- Cloning of pSPIDUA-FLAG --- p.62 / Chapter 3.3.1.4 --- Cloning of pSPIDUA-control --- p.62 / Chapter 3.3.1.5 --- Cloning of a universal construct (pUniversal) --- p.62 / Chapter 3.3.1.6 --- Cloning of pSP-IDUA-T7 --- p.66 / Chapter 3.3.1.7 --- Cloning of pSP-IDUA-control --- p.66 / Chapter 3.3.1.8 --- Cloning of chimeric gene construct into Agrobacterium binary vector --- p.66 / Chapter 3.3.2 --- Expression of chimeric gene construct in tobacco plant --- p.73 / Chapter 3.3.2.1 --- Tobacco plant --- p.73 / Chapter 3.3.2.2 --- Electroporation of Agrobacterium --- p.73 / Chapter 3.3.2.3 --- Agrobacterium-mediated transformation of tobacco plant --- p.74 / Chapter 3.3.2.4 --- Selection and regeneration of tobacco transformant --- p.75 / Chapter 3.3.3 --- Characterization of transgenic tobacco plant expressing rhIDUA fusion --- p.75 / Chapter 3.3.3.1 --- Genomic DNA polymerase chain reaction (PCR) --- p.75 / Chapter 3.3.3.2 --- Southern blot analysis --- p.76 / Chapter 3.3.3.3 --- Total RNA reverse transcription-PCR (RT-PCR) --- p.77 / Chapter 3.3.3.4 --- Northern blot analysis of tobacco leaf --- p.78 / Chapter 3.3.3.5 --- Western blot analysis --- p.79 / Chapter 3.3.4 --- Purification of plant-derived rhIDUA fusion --- p.81 / Chapter 3.3.4.1 --- Construction of affinity column with anti-IDUA antibody --- p.81 / Chapter 3.3.4.2 --- Affinity-purification of rhIDUA fusion from tobacco mature seed --- p.81 / Chapter 3.3.5 --- Confocal immunoflorescence study --- p.82 / Chapter 3.3.5.1 --- Preparation of paraffin section --- p.82 / Chapter 3.3.5.2 --- Single immunocytochemical labeling --- p.82 / Chapter 3.3.5.3 --- Double labeling with one monoclonal and one polyclonal antibodies --- p.83 / Chapter 3.3.5.4 --- Double labeling with two polyclonal antibodies --- p.83 / Chapter 3.3.5.5 --- Image collection --- p.84 / Chapter 3.4 --- Results --- p.85 / Chapter 3.4.1 --- Chimeric gene construction and confirmation --- p.85 / Chapter 3.4.2 --- Selection and regeneration of tobacco transformant with kanamycin- resistance --- p.86 / Chapter 3.4.3 --- Genomic DNA PCR screening of tobacco transformant --- p.88 / Chapter 3.4.4 --- Southern blot analysis of tobacco transformant --- p.91 / Chapter 3.4.5 --- Total RNA RT-PCR screening of tobacco transformant --- p.93 / Chapter 3.4.6 --- Northern blot analysis of tobacco transformant --- p.93 / Chapter 3.4.7 --- Western blot analysis --- p.96 / Chapter 3.4.7.1 --- Western blot analysis of pSP-IDUA-T7-121 transformant leaf --- p.96 / Chapter 3.4.7.2 --- Western blot analysis of pSP-IDUA-T7-121 transformant mature seed --- p.98 / Chapter 3.4.8 --- Affinity-purification of rhIDUA fusion --- p.98 / Chapter 3.4.9 --- Expression level of rhIDUA fusion --- p.102 / Chapter 3.4.10 --- Subcellular localization of rhIDUA fusion --- p.102 / Chapter 3.5 --- Discussion --- p.111 / Chapter Chapter 4 --- Summary and Future Perspectives --- p.117 / References --- p.122 / Appendix 1 --- p.139 / Appendix II (List of Abbreviations) --- p.141
3

Trafficking of lysosomal proteins via the sortilin sorting receptor

Canuel, Maryssa. January 2007 (has links)
No description available.

Page generated in 0.0393 seconds