Spelling suggestions: "subject:"máquina dde aprendizagem extremo"" "subject:"máquina dee aprendizagem extremo""
1 |
Contribuições ao problema de predição recursiva de séries temporais univariadas usando redes neurais recorrentes / Contributions to the problem of recursive prediction of univariate time series using recurrent neural networksMenezes Júnior, José Maria Pires de 02 March 2012 (has links)
MENEZES JÚNIOR, J. M. P. Contribuições ao problema de predição recursiva de séries temporais univariadas usando redes neurais recorrentes. 2012. 186 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2012. / Submitted by Hohana Sanders (hohanasanders@hotmail.com) on 2017-04-11T16:46:00Z
No. of bitstreams: 1
2012_tese_jmpmenezesjúnior.pdf: 8865921 bytes, checksum: 029824a1fa5ffbf3ffe36c81c0b8f5f5 (MD5) / Approved for entry into archive by Marlene Sousa (mmarlene@ufc.br) on 2017-06-02T13:54:13Z (GMT) No. of bitstreams: 1
2012_tese_jmpmenezesjúnior.pdf: 8865921 bytes, checksum: 029824a1fa5ffbf3ffe36c81c0b8f5f5 (MD5) / Made available in DSpace on 2017-06-02T13:54:13Z (GMT). No. of bitstreams: 1
2012_tese_jmpmenezesjúnior.pdf: 8865921 bytes, checksum: 029824a1fa5ffbf3ffe36c81c0b8f5f5 (MD5)
Previous issue date: 2012-03-02 / In this thesis, we tackle the problem of recursive prediction of univariate time series, also known as long-term prediction, using recurrent neural networks. This type of problem often emerges from nonlinear dynamical systems modelling and prediction tasks, particularly from those producing signals of chaotic nature, where one can observe the presence of long-term temporal dependencies. In recursive prediction, differently from the one-step-ahead prediction task, predicted values are fed back to the input of the neural model, a feature that makes time series with long-term temporal dependencies more difficult to deal with due to the propagation of prediction errors. That being said, in order to handle the problem of recursive prediction of univariate time series, extensions of the neural NARX (Nonlinear AutoRegressive model with eXogenous inputs) model ar eintroduced in this thesis. These extensions result from attempts to embed into the NARX model different strategies to capture temporal information, either of short-term or long-term nature. Among such strategies, we highlight the following ones: (i) simultaneous prediction of several steps ahead, also known as MIMO (multi-input, multi-output model) prediction, (ii) prediction via dynamical random projections, as in the ESN (echo state network) model, (iii) prediction via static random projections, as in the ELM (extreme learning machine) network, and (iv) prediction via hybrid recurrent models based the NARX and ELMAN networks. Additionally, a novel methodology for the design (i.e. parameter selection) and performance comparison of the proposed models is also introduced in this model with the aim of evaluating them under similar conditions and to serve as reference for further studies. For this purpose, synthetic and real-world benchmarking time series are used. The obtained results suggest that the proposed neural models present themselves as efficient alternatives to the state of the art in recursive prediction of univariate time series using recurrent neural architectures. / Nesta tese aborda-se o problema de predição recursiva de séries temporais univariadas, também chamado de predição de longo prazo, usando redes neurais recorrentes. Este tipo de problema surge, com frequência, em tarefas de modelagem e predição de sistemas dinâmicos não-lineares, principalmente os que produzem sinais de natureza caótica, em que se observa a presença de dependência temporal (memória) de longa duração. Na predição recursiva, diferentemente da predição de um passo à frente (one-step-ahead prediction), as predições são realimentadas para a entrada do modelo neural, característica esta que dificulta a predição de séries com dependência temporal longa devido à propagação do erro de predição. Isto posto, para tratar o problema de predição recursiva de séries temporais, extensões do modelo neural NARX (Nonlinear AutoRegressive model with eXogenous inputs) são propostas nesta tese. Estas extensões resultam da tentativa de incorporar à rede NARX diferentes estratégias de modelagem da informação temporal, tanto de curto quanto de longo prazo. Dentre estas estratégias, destacamse: (i) predição (simultânea) de vários passos à frente, também chamada de predição MIMO (multi-input, multi-output model), (ii) predição via projeções aleatórias dinâmicas, tal como na rede ESN (echo state network), (iii) predição via projeções aleatórias estáticas, tal como na rede ELM(extreme learning machine), e (iv) predição via modelos recorrentes híbridos baseados nas redes NARX e ELMAN. Além disso, uma metodologia para projeto (i.e. seleção de parâmetros) e comparação dos desempenhos dos modelos propostos é também desenvolvida nesta tese com o objetivo de avaliá-los sob as mesmas condições e servir de referência para estudos futuros. Para este fim, são utilizadas séries temporais sintéticas e reais comumente presentes em benchmarks de desempenho. Os resultados obtidos sugerem que os modelos propostos apresentam-se como alternativas eficientes ao estado da arte em modelos de redes neurais recorrentes para predição de séries temporais univariadas, principalmente aqueles baseados em projeções aleatórias devido ao baixo custo computacional.
|
2 |
Detecção de ilhamento de Geradores Distribuídos utilizando Transformada S e Redes Neurais Artificiais com Máquina de Aprendizado Extremo / Islanding detection for Distributed Generators using S-transform and Artificial Neural Networks with Extreme Learning MachineMenezes, Thiago Souza 24 May 2019 (has links)
A conexão de Geradores Distribuídos (GDs) no sistema de distribuição vem se intensificando nos últimos anos. Neste cenário, o aumento de GDs pode trazer alguns benefícios, como a redundância da geração e redução das perdas elétricas. Por outro lado, o problema do ilhamento também vem se destacando. Atualmente, existem técnicas já consolidadas para a detecção do ilhamento, sendo que as técnicas passivas estão entre as mais utilizadas. Entretanto, as técnicas passivas são bastante dependentes do desbalanço de potência entre a geração e as cargas no momento de ocorrência do ilhamento para atuarem corretamente. Caso o desbalanço de potência seja pequeno, as técnicas passivas tendem a não identificar o ilhamento, gerando as chamadas Zonas de Não Detecção (ZNDs). Para mitigar este problema, a pesquisa por técnicas passivas inteligentes baseadas em aprendizagem de máquina vem se tornando cada vez mais comum. Neste trabalho foi modelada uma proteção anti-ilhamento baseada em Redes Neurais Artificiais (RNAs). A classificação do ilhamento é feita com base no espectro de frequência das tensões nos terminais do GD com o uso da Transformada de Stockwell, ou apenas Transformada S (TS). Outro ponto importante da metodologia foi a implementação de uma etapa de detecção de eventos, também baseada nas energias do espectro de frequência das tensões, para evitar a constante execução do classificador. Assim, a RNA apenas irá classificar o evento após receber um sinal de trigger da etapa de detecção de evento. Para o treinamento da RNA foram testados dois algoritmos diferentes, o clássico Backpropagation (BP) e a Máquina de Aprendizado Extremo, do inglês Extreme Learning Machine (ELM). Ressalta-se o melhor desempenho obtido com as redes treinadas pelo ELM, que apresentaram uma capacidade de generalização muito maior, logo, resultando em taxas de acerto mais elevadas. De modo geral, depois de comparada com métodos passivos convencionais para a detecção de ilhamento, a proteção proposta se mostrou mais precisa e com um tempo de detecção muito menor, sendo inferior a 2 ciclos. Por fim, ainda foi realizada a análise das ZNDs para a proteção proposta e as técnicas convencionais, por ser uma característica muito importante para a proteção antiilhamento, mas que não é comumente abordada para técnicas passivas inteligentes. Nesta análise, o método para a detecção de ilhamento proposto novamente se sobressaiu às técnicas convencionais, apresentado uma ZND muito menor. / The connection of distributed generators (DG) in the distribution system has been intensified in the recent years. In this scenario, the increase of DG can bring some benefits, such as generation redundancy and reduction of power losses. On the other hand, the problem of islanding is also been highlighted. Currently, there are already consolidated techniques for islanding detection, and passive techniques are among the most used ones. However, the passive techniques are very dependent of the power unbalance between the generation and the loads at the moment of the islanding in order to actuate properly. If the power mismatch is small, the passive techniques tend to not identify the islanding, generating the so called Non-Detection Zones (NDZ). To mitigate this issue, the research of intelligent passive techniques based in machine learning is becoming more common. In this study, an anti-islanding protection based on Artificial Neural Networks (ANN) was modelled. The islanding classification is done based on the frequency spectrum of the DG\'s terminal voltages using the Stockwell Transform, or just S-Transform (ST). Another important point of the methodology was the implementation of an event detection stage, also based on the energies of the voltages frequency spectrum, to avoid the constant execution of the classifier. Therefore, the ANN will only classify the event after receiving a trigger signal from the event detection stage. To train the ANN, two different algorithms were tested: the classic Backpropagation and the Extreme Learning Machine (ELM). It is noteworthy the better performance obtained with the neural networks trained by the ELM, which had a greater capacity of generalization, hence resulting in higher success rates. In general, after being compared with conventional passive techniques for islanding detection, the proposed protection was more accurate and with a much smaller detection time, being less than 2 cycles. Finally, the analysis of the NDZ for the proposed protection and the conventional techniques was carried out, as it is a very important feature for anti-islanding protection, but is not commonly addressed for intelligent passive techniques. In this analysis, the islanding detection method proposed again overcame the conventional techniques, presenting a much smaller NDZ.
|
Page generated in 0.0947 seconds