Spelling suggestions: "subject:"máquinas dde vetores suporte"" "subject:"máquinas dee vetores suporte""
11 |
Máquinas de Vetores Suporte e a Análise de Gestos: incorporando aspectos temporais / Support Vector Machines and Gesture Analysis: incorporating temporal aspectsRenata Cristina Barros Madeo 15 May 2013 (has links)
Recentemente, tem se percebido um interesse maior da área de computação pela pesquisa em análise de gestos. Parte dessas pesquisas visa dar suporte aos pesquisadores da área de \"estudos dos gestos\", que estuda o uso de partes do corpo para fins comunicativos. Pesquisadores dessa área analisam gestos a partir de transcrições de conversas ou discursos gravados em vídeo. Para a transcrição dos gestos, geralmente realiza-se a sua segmentação em unidades gestuais e fases. O presente trabalho tem por objetivo desenvolver estratégias para segmentação automatizada das unidades gestuais e das fases dos gestos contidos em um vídeo no contexto de contação de histórias, formulando o problema como uma tarefa de classificação supervisionada. As Máquinas de Vetores Suporte foram escolhidas como método de classificação, devido à sua capacidade de generalização e aos bons resultados obtidos para diversos problemas complexos. Máquinas de Vetores Suporte, porém, não consideram os aspectos temporais dos dados, características que são importantes na análise dos gestos. Por esse motivo, este trabalho investiga métodos de representação temporal e variações das Máquinas de Vetores Suporte que consideram raciocínio temporal. Vários experimentos foram executados neste contexto para segmentação de unidades gestuais. Os melhores resultados foram obtidos com Máquinas de Vetores Suporte tradicionais aplicadas a dados janelados. Além disso, três estratégias de classificação multiclasse foram aplicadas ao problema de segmentação das fases dos gestos. Os resultados indicam que um bom desempenho para a segmentação de gestos pode ser obtido ao realizar o treinamento da estratégia com um trecho inicial do vídeo para obter uma segmentação automatizada do restante do vídeo. Assim, os pesquisadores da área de \"estudos dos gestos\" poderiam segmentar manualmente apenas um trecho do vídeo, reduzindo o tempo necessário para realizar a análise dos gestos presentes em gravações longas. / Recently, it has been noted an increasing interest from computer science for research on gesture analysis. Some of these researches aims at supporting researchers from \"gesture studies\", which studies the use of several body parts for communicative purposes. Researchers of \"gesture studies\" analyze gestures from transcriptions of conversations and discourses recorded in video. For gesture transcriptions, gesture unit segmentation and gesture phase segmentation are usually employed. This study aims to develop strategies for automated segmentation of gestural units and phases of gestures contained in a video in the context of storytelling, formulating the problem as a supervised classification task. Support Vector Machines were selected as classification method, because of its ability to generalize and good results obtained for many complex problems. Support Vector Machines, however, do not consider the temporal aspects of data, characteristics that are important for gesture analysis. Therefore, this paper investigates methods of temporal representation and variations of the Support Vector machines that consider temporal reasoning. Several experiments were performed in this context for gesture units segmentation. The best results were obtained with traditional Support Vector Machines applied to windowed data. In addition, three strategies of multiclass classification were applied to the problem of gesture phase segmentation. The results indicate that a good performance for gesture segmentation can be obtained by training the strategy with an initial part of the video to get an automated segmentation of the rest of the video. Thus, researchers in \"gesture studies\" could manually segment only part of the video, reducing the time needed to perform the analysis of gestures contained in long recordings.
|
12 |
Extração de conhecimento simbólico em técnicas de aprendizado de máquina caixa-preta por similaridade de rankings / Symbolic knowledge extraction from black-box machine learning techniques with ranking similaritiesRodrigo Elias Bianchi 26 September 2008 (has links)
Técnicas de Aprendizado de Máquina não-simbólicas, como Redes Neurais Artificiais, Máquinas de Vetores de Suporte e combinação de classificadores têm mostrado um bom desempenho quando utilizadas para análise de dados. A grande limitação dessas técnicas é a falta de compreensibilidade do conhecimento armazenado em suas estruturas internas. Esta Tese apresenta uma pesquisa realizada sobre métodos de extração de representações compreensíveis do conhecimento armazenado nas estruturas internas dessas técnicas não-simbólicas, aqui chamadas de caixa preta, durante seu processo de aprendizado. A principal contribuição desse trabalho é a proposta de um novo método pedagógico para extração de regras que expliquem o processo de classificação seguido por técnicas não-simbólicas. Esse novo método é baseado na otimização (maximização) da similaridade entre rankings de classificação produzidos por técnicas de Aprendizado de Máquina simbólicas e não simbólicas (de onde o conhecimento interno esta sendo extraído). Experimentos foram realizados com vários conjuntos de dados e os resultados obtidos sugerem um bom potencial para o método proposto / Non-symbolic Machine Learning techniques, like Artificial Neural Networks, Support Vector Machines and Ensembles of classifiers have shown a good performance when they are used in data analysis. The strong limitation regarding the use of these techniques is the lack of comprehensibility of the knowledge stored in their internal structure. This Thesis presents an investigation of methods capable of extracting comprehensible representations of the knowledge acquired by these non-symbolic techniques, here named black box, during their learning process. The main contribution of this work is the proposal of a new pedagogical method for rule extraction that explains the classification process followed by non-symbolic techniques. This new method is based on the optimization (maximization) of the similarity between classification rankings produced by symbolic and non-symbolic (from where the internal knowledge is being extracted) Machine Learning techniques. Experiments were performed for several datasets and the results obtained suggest a good potential of the proposed method
|
13 |
Algoritmos online baseados em vetores suporte para regressão clássica e ortogonalSouza, Roberto Carlos Soares Nalon Pereira 21 February 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-05-30T20:07:56Z
No. of bitstreams: 1
robertocarlossoaresnalonpereirasouza.pdf: 1346845 bytes, checksum: e248f967f42f4ef763b613dc39ed0649 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-01T11:51:04Z (GMT) No. of bitstreams: 1
robertocarlossoaresnalonpereirasouza.pdf: 1346845 bytes, checksum: e248f967f42f4ef763b613dc39ed0649 (MD5) / Made available in DSpace on 2017-06-01T11:51:04Z (GMT). No. of bitstreams: 1
robertocarlossoaresnalonpereirasouza.pdf: 1346845 bytes, checksum: e248f967f42f4ef763b613dc39ed0649 (MD5)
Previous issue date: 2013-02-21 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho apresenta-se uma nova formulação para regressão ortogonal. O problema é definido como a minimização do risco empírico em relação a uma função de perda com tubo desenvolvida para regressão ortogonal, chamada ρ-insensível. Um algoritmo para resolver esse problema é proposto, baseado na abordagem da descida do gradiente estocástica. Quando formulado em variáveis duais o método permite a introdução de funções kernel e flexibilidade do tubo. Até onde se sabe, este é o primeiro método que permite a introdução de kernels, através do chamado “kernel-trick”, para regressão ortogonal. Apresenta-se ainda um algoritmo para regressão clássica que usa a função de perda ε-insensível e segue também a abordagem da descida do gradiente. Para esse algo ritmo apresenta-se uma prova de convergência que garante um número finito de correções. Finalmente, introduz-se uma estratégia incremental que pode ser usada acoplada com ambos os algoritmos para obter soluções esparsas e também uma aproximação para o “tubo mínimo”que contém os dados. Experimentos numéricos são apresentados e os resultados comparados a outros métodos da literatura. / In this work, we introduce a new formulation for orthogonal regression. The problem
is defined as minimization of the empirical risk with respect to a tube loss function de
veloped for orthogonal regression, named ρ-insensitive. The method is constructed via
an stochastic gradient descent approach. The algorithm can be used in primal or in dual
variables. The latter formulation allows the introduction of kernels and soft margins. To
the best of our knowledge, this is the first method that allows the introduction of kernels
via the so-called “kernel-trick” for orthogonal regression. Also, we present an algorithm
to solve the classical regression problem using the ε-insensitive loss function. A conver
gence proof that guarantees a finite number of updates is presented for this algorithm.
In addition, an incremental strategy algorithm is introduced, which can be used to find
sparse solutions and also an approximation to the “minimal tube” containing the data.
Numerical experiments are shown and the results compared with other methods.
|
14 |
Ensemble baseado em métodos de Kernel para reconhecimento biométrico multimodal / Ensemble Based on Kernel Methods for Multimodal Biometric RecognitionCosta, Daniel Moura Martins da 31 March 2016 (has links)
Com o avanço da tecnologia, as estratégias tradicionais para identificação de pessoas se tornaram mais suscetíveis a falhas, de forma a superar essas dificuldades algumas abordagens vêm sendo propostas na literatura. Dentre estas abordagens destaca-se a Biometria. O campo da Biometria abarca uma grande variedade de tecnologias usadas para identificar e verificar a identidade de uma pessoa por meio da mensuração e análise de aspectos físicos e/ou comportamentais do ser humano. Em função disso, a biometria tem um amplo campo de aplicações em sistemas que exigem uma identificação segura de seus usuários. Os sistemas biométricos mais populares são baseados em reconhecimento facial ou de impressões digitais. Entretanto, existem outros sistemas biométricos que utilizam a íris, varredura de retina, voz, geometria da mão e termogramas faciais. Nos últimos anos, o reconhecimento biométrico obteve avanços na sua confiabilidade e precisão, com algumas modalidades biométricas oferecendo bom desempenho global. No entanto, mesmo os sistemas biométricos mais avançados ainda enfrentam problemas. Recentemente, esforços têm sido realizados visando empregar diversas modalidades biométricas de forma a tornar o processo de identificação menos vulnerável a ataques. Biometria multimodal é uma abordagem relativamente nova para representação de conhecimento biométrico que visa consolidar múltiplas modalidades biométricas. A multimodalidade é baseada no conceito de que informações obtidas a partir de diferentes modalidades se complementam. Consequentemente, uma combinação adequada dessas informações pode ser mais útil que o uso de informações obtidas a partir de qualquer uma das modalidades individualmente. As principais questões envolvidas na construção de um sistema biométrico unimodal dizem respeito à definição das técnicas de extração de característica e do classificador. Já no caso de um sistema biométrico multimodal, além destas questões, é necessário definir o nível de fusão e a estratégia de fusão a ser adotada. O objetivo desta dissertação é investigar o emprego de ensemble para fusão das modalidades biométricas, considerando diferentes estratégias de fusão, lançando-se mão de técnicas avançadas de processamento de imagens (tais como transformada Wavelet, Contourlet e Curvelet) e Aprendizado de Máquina. Em especial, dar-se-á ênfase ao estudo de diferentes tipos de máquinas de aprendizado baseadas em métodos de Kernel e sua organização em arranjos de ensemble, tendo em vista a identificação biométrica baseada em face e íris. Os resultados obtidos mostraram que a abordagem proposta é capaz de projetar um sistema biométrico multimodal com taxa de reconhecimento superior as obtidas pelo sistema biométrico unimodal. / With the advancement of technology, traditional strategies for identifying people become more susceptible to failure, in order to overcome these difficulties some approaches have been proposed in the literature. Among these approaches highlights the Biometrics. The field of Biometrics encompasses a wide variety of technologies used to identify and verify the person\'s identity through the measurement and analysis of physiological and behavioural aspects of the human body. As a result, biometrics has a wide field of applications in systems that require precise identification of their users. The most popular biometric systems are based on face recognition and fingerprint matching. Furthermore, there are other biometric systems that utilize iris and retinal scan, speech, face, and hand geometry. In recent years, biometrics authentication has seen improvements in reliability and accuracy, with some of the modalities offering good performance. However, even the best biometric modality is facing problems. Recently, big efforts have been undertaken aiming to employ multiple biometric modalities in order to make the authentication process less vulnerable to attacks. Multimodal biometrics is a relatively new approach to biometrics representation that consolidate multiple biometric modalities. Multimodality is based on the concept that the information obtained from different modalities complement each other. Consequently, an appropriate combination of such information can be more useful than using information from single modalities alone. The main issues involved in building a unimodal biometric System concern the definition of the feature extraction technique and type of classifier. In the case of a multimodal biometric System, in addition to these issues, it is necessary to define the level of fusion and fusion strategy to be adopted. The aim of this dissertation is to investigate the use of committee machines to fuse multiple biometric modalities, considering different fusion strategies, taking into account advanced methods in machine learning. In particular, it will give emphasis to the analyses of different types of machine learning methods based on Kernel and its organization into arrangements committee machines, aiming biometric authentication based on face, fingerprint and iris. The results showed that the proposed approach is capable of designing a multimodal biometric System with recognition rate than those obtained by the unimodal biometrics Systems.
|
15 |
Ensemble baseado em métodos de Kernel para reconhecimento biométrico multimodal / Ensemble Based on Kernel Methods for Multimodal Biometric RecognitionDaniel Moura Martins da Costa 31 March 2016 (has links)
Com o avanço da tecnologia, as estratégias tradicionais para identificação de pessoas se tornaram mais suscetíveis a falhas, de forma a superar essas dificuldades algumas abordagens vêm sendo propostas na literatura. Dentre estas abordagens destaca-se a Biometria. O campo da Biometria abarca uma grande variedade de tecnologias usadas para identificar e verificar a identidade de uma pessoa por meio da mensuração e análise de aspectos físicos e/ou comportamentais do ser humano. Em função disso, a biometria tem um amplo campo de aplicações em sistemas que exigem uma identificação segura de seus usuários. Os sistemas biométricos mais populares são baseados em reconhecimento facial ou de impressões digitais. Entretanto, existem outros sistemas biométricos que utilizam a íris, varredura de retina, voz, geometria da mão e termogramas faciais. Nos últimos anos, o reconhecimento biométrico obteve avanços na sua confiabilidade e precisão, com algumas modalidades biométricas oferecendo bom desempenho global. No entanto, mesmo os sistemas biométricos mais avançados ainda enfrentam problemas. Recentemente, esforços têm sido realizados visando empregar diversas modalidades biométricas de forma a tornar o processo de identificação menos vulnerável a ataques. Biometria multimodal é uma abordagem relativamente nova para representação de conhecimento biométrico que visa consolidar múltiplas modalidades biométricas. A multimodalidade é baseada no conceito de que informações obtidas a partir de diferentes modalidades se complementam. Consequentemente, uma combinação adequada dessas informações pode ser mais útil que o uso de informações obtidas a partir de qualquer uma das modalidades individualmente. As principais questões envolvidas na construção de um sistema biométrico unimodal dizem respeito à definição das técnicas de extração de característica e do classificador. Já no caso de um sistema biométrico multimodal, além destas questões, é necessário definir o nível de fusão e a estratégia de fusão a ser adotada. O objetivo desta dissertação é investigar o emprego de ensemble para fusão das modalidades biométricas, considerando diferentes estratégias de fusão, lançando-se mão de técnicas avançadas de processamento de imagens (tais como transformada Wavelet, Contourlet e Curvelet) e Aprendizado de Máquina. Em especial, dar-se-á ênfase ao estudo de diferentes tipos de máquinas de aprendizado baseadas em métodos de Kernel e sua organização em arranjos de ensemble, tendo em vista a identificação biométrica baseada em face e íris. Os resultados obtidos mostraram que a abordagem proposta é capaz de projetar um sistema biométrico multimodal com taxa de reconhecimento superior as obtidas pelo sistema biométrico unimodal. / With the advancement of technology, traditional strategies for identifying people become more susceptible to failure, in order to overcome these difficulties some approaches have been proposed in the literature. Among these approaches highlights the Biometrics. The field of Biometrics encompasses a wide variety of technologies used to identify and verify the person\'s identity through the measurement and analysis of physiological and behavioural aspects of the human body. As a result, biometrics has a wide field of applications in systems that require precise identification of their users. The most popular biometric systems are based on face recognition and fingerprint matching. Furthermore, there are other biometric systems that utilize iris and retinal scan, speech, face, and hand geometry. In recent years, biometrics authentication has seen improvements in reliability and accuracy, with some of the modalities offering good performance. However, even the best biometric modality is facing problems. Recently, big efforts have been undertaken aiming to employ multiple biometric modalities in order to make the authentication process less vulnerable to attacks. Multimodal biometrics is a relatively new approach to biometrics representation that consolidate multiple biometric modalities. Multimodality is based on the concept that the information obtained from different modalities complement each other. Consequently, an appropriate combination of such information can be more useful than using information from single modalities alone. The main issues involved in building a unimodal biometric System concern the definition of the feature extraction technique and type of classifier. In the case of a multimodal biometric System, in addition to these issues, it is necessary to define the level of fusion and fusion strategy to be adopted. The aim of this dissertation is to investigate the use of committee machines to fuse multiple biometric modalities, considering different fusion strategies, taking into account advanced methods in machine learning. In particular, it will give emphasis to the analyses of different types of machine learning methods based on Kernel and its organization into arrangements committee machines, aiming biometric authentication based on face, fingerprint and iris. The results showed that the proposed approach is capable of designing a multimodal biometric System with recognition rate than those obtained by the unimodal biometrics Systems.
|
16 |
Emprego de comitê de máquinas para segmentação da írisSchneider, Mauro Ulisses 23 August 2010 (has links)
Made available in DSpace on 2016-03-15T19:37:30Z (GMT). No. of bitstreams: 1
Mauro Ulisses Schneider.pdf: 1455677 bytes, checksum: 6eba28391f8f6910fbf5457a57119bd3 (MD5)
Previous issue date: 2010-08-23 / Fundo Mackenzie de Pesquisa / The use of biometric systems has been widely stimulated by both the government and private entities to replace or improve traditional security systems. Biometric systems are becoming increasingly indispensable to protecting life and property, mainly due to its robustness, reliability, difficult to counterfeit and fast authentication. In real world applications, the devices for image acquisition and the environment are not always controlled and may under certain circumstances produce noisy images or with large variations in tonality, texture, geometry, hindering segmentation and consequently the authentication of the an individual. To deal effectively with such problems, this dissertation investigates the possibility of using committee machines combined with digital image processing techniques for iris segmentation. The components employed in the composition of the committee machines are support vector clustering, k-means and self organizing maps. In order to evaluate the performance of the tools developed in this dissertation, the experimental results obtained are compared with related works reported in the literature. Experiments on publicity available UBIRIS database indicate that committee machine can be successfully applied to the iris segmentation. / A utilização de sistemas biométricos vem sendo amplamente; incentivados pelo governo e entidades privadas a fim de substituir ou melhorar os sistemas de segurança tradicionais. Os sistemas biométricos são cada vez mais indispensáveis para proteger vidas e bens, sendo robustos, confiáveis, de difícil falsificação e rápida autenticação. Em aplicações de mundo real, os dispositivos de aquisição de imagem e o ambiente nem sempre são controlados, podendo em certas circunstâncias produzir imagens ruidosas ou com grandes variações na tonalidade, textura, geometria, dificultando a sua segmentação e por conseqüência a autenticação do indivíduo. Para lidar eficazmente com tais problemas, nesta dissertação é estudado o emprego de comitês de máquinas em conjunto com técnicas de processamento de imagens digitais para a segmentação da íris. Os componentes estudados na composição do comitê de máquinas são agrupamento por vetores-suporte, k-means e mapas auto- organizáveis. Para a avaliação do desempenho das ferramentas desenvolvidas neste trabalho, os resultados obtidos são comparados com trabalhos relacionados na literatura. Foi utilizada a base de dados pública UBIRIS disponível na internet.
|
17 |
ESTUDO DE ÍNDICES DE DIVERSIDADE COMO DESCRITORES DE TEXTURA PARA CLASSIFICAÇÃO DE IMAGENS DE FACES / STUDY OF DIVERSITY INDICES AS DESCRIPTORS OF TEXTURE FOR CLASSIFICATION IMAGES OF FACESReis, Artur Bernardo Silva 13 April 2012 (has links)
Made available in DSpace on 2016-08-17T14:53:20Z (GMT). No. of bitstreams: 1
dissertacao Artur.pdf: 2614613 bytes, checksum: ccffca7646e98481fa69cd43bca77f03 (MD5)
Previous issue date: 2012-04-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work purposes an investigation into the potential of characterization of
textures of human faces in digital images using the diversity index. To this
we developed a methodology that uses the retinex to normalization of lighting
conditions, diversity indexes for feature extraction and Support Vector Machine as
classifier. Several tests are performed using four bases of face images, each base
with uniques characteristics that can be verified the usability of the indexes used.
The results are very promising since in eighteen tests were reached accuracies
over 95%. In addition, a sensitivity of 100% in a test case and false positive
rate of 0.2%, indicating that the diversity index can be a good tool for describing
textures of human faces. / O objeto de estudo deste trabalho é uma investigação sobre o potencial grau
de caracterização de texturas de faces humanas em imagens digitais usando
índices de diversidade. Para isto é desenvolvida uma metodologia que utiliza o
retinex como técnica de normalização de iluminação, índices de diversidade para
a extração de características e a Máquina de Vetores Suporte como classificador.
Para isto são realizados vários testes utilizando quatro bases de imagens de faces,
com várias características peculiares para que possa ser verificada a usabilidade
dos índices utilizados. Os resultados obtidos são muito promissores, uma vez
que em dezoito testes realizados, foram atingidas acurácias acima de 95%. Além
disso, obtivemos sensibilidade de 100% em um caso de teste e taxa de falsos
positivos de 0.2%, indicando que os índices de diversidade podem ser uma boa
ferramenta para a descrição de texturas de faces humanas.
|
18 |
\"Processamento e análise de imagens para medição de vícios de refração ocular\" / Image Processing and Analysis for Measuring Ocular Refraction ErrorsValerio Netto, Antonio 18 August 2003 (has links)
Este trabalho apresenta um sistema computacional que utiliza técnicas de Aprendizado de Máquina (AM) para auxiliar o diagnóstico oftalmológico. Trata-se de um sistema de medidas objetivas e automáticas dos principais vícios de refração ocular, astigmatismo, hipermetropia e miopia. O sistema funcional desenvolvido aplica técnicas convencionais de processamento a imagens do olho humano fornecidas por uma técnica de aquisição chamada Hartmann-Shack (HS), ou Shack-Hartmann (SH), com o objetivo de extrair e enquadrar a região de interesse e remover ruídos. Em seguida, vetores de características são extraídos dessas imagens pela técnica de transformada wavelet de Gabor e, posteriormente, analisados por técnicas de AM para diagnosticar os possíveis vícios refrativos presentes no globo ocular representado. Os resultados obtidos indicam a potencialidade dessa abordagem para a interpretação de imagens de HS de forma que, futuramente, outros problemas oculares possam ser detectados e medidos a partir dessas imagens. Além da implementação de uma nova abordagem para a medição dos vícios refrativos e da introdução de técnicas de AM na análise de imagens oftalmológicas, o trabalho contribui para a investigação da utilização de Máquinas de Vetores Suporte e Redes Neurais Artificiais em sistemas de Entendimento/Interpretação de Imagens (Image Understanding). O desenvolvimento deste sistema permite verificar criticamente a adequação e limitações dessas técnicas para a execução de tarefas no campo do Entendimento/Interpretação de Imagens em problemas reais. / This work presents a computational system that uses Machine Learning (ML) techniques to assist in ophthalmological diagnosis. The system developed produces objective and automatic measures of ocular refraction errors, namely astigmatism, hypermetropia and myopia from functional images of the human eye acquired with a technique known as Hartmann-Shack (HS), or Shack-Hartmann (SH). Image processing techniques are applied to these images in order to remove noise and extract the regions of interest. The Gabor wavelet transform technique is applied to extract feature vectors from the images, which are then input to ML techniques that output a diagnosis of the refractive errors in the imaged eye globe. Results indicate that the proposed approach creates interesting possibilities for the interpretation of HS images, so that in the future other types of ocular diseases may be detected and measured from the same images. In addition to implementing a novel approach for measuring ocular refraction errors and introducing ML techniques for analyzing ophthalmological images, this work investigates the use of Artificial Neural Networks and Support Vector Machines (SVMs) for tasks in Image Understanding. The description of the process adopted for developing this system can help in critically verifying the suitability and limitations of such techniques for solving Image Understanding tasks in \"real world\" problems.
|
19 |
\"Processamento e análise de imagens para medição de vícios de refração ocular\" / Image Processing and Analysis for Measuring Ocular Refraction ErrorsAntonio Valerio Netto 18 August 2003 (has links)
Este trabalho apresenta um sistema computacional que utiliza técnicas de Aprendizado de Máquina (AM) para auxiliar o diagnóstico oftalmológico. Trata-se de um sistema de medidas objetivas e automáticas dos principais vícios de refração ocular, astigmatismo, hipermetropia e miopia. O sistema funcional desenvolvido aplica técnicas convencionais de processamento a imagens do olho humano fornecidas por uma técnica de aquisição chamada Hartmann-Shack (HS), ou Shack-Hartmann (SH), com o objetivo de extrair e enquadrar a região de interesse e remover ruídos. Em seguida, vetores de características são extraídos dessas imagens pela técnica de transformada wavelet de Gabor e, posteriormente, analisados por técnicas de AM para diagnosticar os possíveis vícios refrativos presentes no globo ocular representado. Os resultados obtidos indicam a potencialidade dessa abordagem para a interpretação de imagens de HS de forma que, futuramente, outros problemas oculares possam ser detectados e medidos a partir dessas imagens. Além da implementação de uma nova abordagem para a medição dos vícios refrativos e da introdução de técnicas de AM na análise de imagens oftalmológicas, o trabalho contribui para a investigação da utilização de Máquinas de Vetores Suporte e Redes Neurais Artificiais em sistemas de Entendimento/Interpretação de Imagens (Image Understanding). O desenvolvimento deste sistema permite verificar criticamente a adequação e limitações dessas técnicas para a execução de tarefas no campo do Entendimento/Interpretação de Imagens em problemas reais. / This work presents a computational system that uses Machine Learning (ML) techniques to assist in ophthalmological diagnosis. The system developed produces objective and automatic measures of ocular refraction errors, namely astigmatism, hypermetropia and myopia from functional images of the human eye acquired with a technique known as Hartmann-Shack (HS), or Shack-Hartmann (SH). Image processing techniques are applied to these images in order to remove noise and extract the regions of interest. The Gabor wavelet transform technique is applied to extract feature vectors from the images, which are then input to ML techniques that output a diagnosis of the refractive errors in the imaged eye globe. Results indicate that the proposed approach creates interesting possibilities for the interpretation of HS images, so that in the future other types of ocular diseases may be detected and measured from the same images. In addition to implementing a novel approach for measuring ocular refraction errors and introducing ML techniques for analyzing ophthalmological images, this work investigates the use of Artificial Neural Networks and Support Vector Machines (SVMs) for tasks in Image Understanding. The description of the process adopted for developing this system can help in critically verifying the suitability and limitations of such techniques for solving Image Understanding tasks in \"real world\" problems.
|
Page generated in 0.0962 seconds