• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation et conception de mélanges polymère/eau pour application aux piles à combustible utilisant une membrane polymère comme électrolyte

Laflamme, Patrick January 2013 (has links)
Quelques vecteurs énergétiques sont présentement en développement afin de remplacer le moteur à combustion dans les véhicules et ainsi diversifier les sources d'énergie et mieux contrôler les sources de pollution. Les vecteurs énergétiques de remplacement ne doivent donc pas être polluants. Les deux principaux candidats répondant à cette condition sont la pile à combustible à membrane polymère électrolyte (PEMFC) et la pile électrique. Malheureusement, une amélioration des connaissances fondamentales du fonctionnement de ces deux systèmes est requise afin de permettre leur commercialisation pour le marché de l'automobile. Les constructeurs automobiles, tel que General Motors, considèrent que la PEMFC et la pile électrique sont complémentaires. En fait, selon eux, la pile électrique servirait à faire la transition entre le moteur à combustion et la PEMFC. Chacune des composantes de la PEMFC est une source de grands défis technologiques. En effet, ses électrodes ont tendances à perdre de leur efficacité lors des cycles marche/arrêt. De plus, l'hydrogène à l'origine de son fonctionnement doit subir une purification très poussée pour diminuer l'empoisonnement du catalyseur de platine. Finalement, la membrane polymère électrolyte subit une déformation mécanique sous l'effet des cycles de séchage et d'hydratation. Cette dernière composante représente d'ailleurs le plus grand défi d'amélioration de la pile, car aucune amélioration notable ne lui a été apportée depuis les débuts de l'utilisation du Nafion® comme membrane en 1960. De plus, de nos jours la membrane de Nafion® est toujours utilisée dans les PEMFCs. La difficulté à la modifier et à améliorer ses performances de la membrane sont directement liées à notre compréhension seulement partielle de son fonctionnement et du rôle de ses composantes. Dans le cadre de cette étude, nous avons utilisé comme système modèle la membrane de Nafion® à faible hydratation. L'étude de ce modèle présente des intérêts autant fondamentaux qu'industriels. Les intérêts industriels sont axés sur l'amélioration de la conductivité protonique, l'accroissement de la durée de vie et la diminution du coût de la membrane. Les intérêts fondamentaux sont quant à eux reliés au défi de caractériser complètement un système à densité élevée où le phénomène de transport de protons se produit à plusieurs échelles de grandeur et de temps. Le nombre important de données expérimentales reliées à la membrane de Nafion® permettra l'exploration de tous ces pôles d'intérêt. L'étude du transport de protons au sein de la membrane a été effectuée en utilisant des modèles possédant une taille propre aux divers phénomènes relatifs au transport de protons. Chacun de ces modèles a permis de décrire les phénomènes à l'échelle où ils ont lieu : la simulation de la structure électronique pour appréhender le processus de dissociation et la simulation atomistique pour décrire l'interaction au sein des membranes. Ce type d'approche est dit approche muni-échelles. Une approche permettant d'améliorer la résistance mécanique de la membrane consiste à diminuer le volume d'eau nécessaire à son fonctionnement. Par contre, un volume d'eau suffisant doit être présent pour assurer le transport des protons. L'objectif est donc de quantifier le volume, représenté ici par le nombre de molécules d'eau, pour obtenir un transport de protons adéquat tout en minimisant le risque de bris mécaniques. Dans le cadre de cette approche, nous avons étudié le processus de dissociation du groupement acide de la membrane de Nafion® afin de quantifier le nombre de molécules d'eau nécessaires pour assurer le transport de protons. L'étude de la dissociation de ce super acide doit s'effectuer au niveau de l'échelle électronique de façon à pouvoir décrire précisément les interactions inter et intramoléculaires lors de la dissociation. Par contre, compte tenu du nombre important de degrés de liberté, l'exploration d'un système à cette échelle est restreinte à un faible nombre d'atomes. Il est donc essentiel de trouver un modèle qui puisse décrire le plus fidèlement possible le comportement du groupement acide du Nafion® tout en préservant un temps de calcul et une demande en ressource informatique raisonnable. Le modèle choisi a été celui de l'acide trifluorométhanesulfonique (acide triflique). L'utilisation de ce modèle permet de réaliser uniquement l'étude du processus de dissociation sans y adjoindre d'autres contraintes telles que celles émanant de la conformation de la chaîne latérale et du polymère. Il nous a ainsi été possible de caractériser la dissociation coopérative entre deux molécules d'acide lors de l'ajout de molécules d'eau. Cette meilleure compréhension du processus de dissociation nous a permis de proposer de nouveaux acides qui sont en cours de synthèse. Par la suite, nous avons étudié les propriétés de la membrane de Nafionli) à basse hydratation et à une température avoisinant 100°C. À cette température, le niveau de purification du combustible peut être grandement réduit car l'empoisonnement du catalyseur par les sulfures est moins important. La simulation atomistique a été utilisée pour explorer le comportement de la membrane de Nafion® dans ces conditions à des échelles de temps et de taille supérieures à celles accessibles par la simulation électronique. Contrairement à cette dernière, elle permet d'explorer la dynamique d'un grand ensemble d'atomes. Lors de cette étude, nous avons observé un phénomène associé à une transition vitreuse ionique expérimentale. L'hypothèse actuelle permettant d'expliquer ce phénomène suppose qu'une hydratation faible de la membrane augmenterait la rigidité de la structure des clusters d'eau autour des chaînes latérales du polymère. Les simulations atomistiques effectuées dans le cadre de cette étude ont permis de confirmer cette hypothèse. Finalement, l'énergie libre d'interaction intermoléculaire entre l'eau et le Nafione a été déterminée par la méthode d'intégration thermodynamique et la méthode hybride de Suter, qui consiste à effectuer l'intégration thermodynamique suivie de l'insertion de la particule de Widom, pour obtenir le paramètre d'interaction de Flory-Huggins en fonction de l'hydratation de la membrane. Ce paramètre joue un rôle clé dans la modélisation de la membrane à une échelle mésoscopique.

Page generated in 0.0637 seconds