Spelling suggestions: "subject:"météorologie dde l’espace"" "subject:"météorologie dee l’espace""
1 |
Reconstruction du spectre UV solaire en vue de la caractérisation des environnements planétaires / Reconstruction of the solar spectral UV irradiance for the characterization of planetary atmospheresCessateur, Gael 17 October 2011 (has links)
La connaissance du flux UltraViolet (UV) solaire et de sa variabilité dans le temps est un problème clé aussi bien dans le domaine de l’aéronomie qu’en physique solaire. Alors que l’extrême UV, entre 10 et 121 nm, est important pour la caractérisation de l’ionosphère, l’UV entre 121 et 300 nm l’est tout autant pour les modélisations climatiques. La mesure continue de l’irradiance dans l’UV est cependant une tâche ardue. En effet, les instruments spatiaux étant dans un environnement hostile se dégradent rapidement. De nombreux modèles basés sur des indices solaires sont alors utilisées lorsque peu de données sont disponibles. Pourtant, l’utilisation de ces indices ne permet pas d’atteindre aujourd’hui une précision suffisante pour les différentes applications en météorologie de l’espace. Comme alternative, ce travail de thèse met en avant l’utilisation de bandes passantes pour reconstruire l’irradiance solaire dans l’UV. En utilisant des méthodes d’analyse statistique multivariée, ce travail met tout d’abord en évidence la forte cohérence de la variabilité spectrale de l’irradiance dans l’UV, ainsi que ses principales caractéristiques. Une première étape consiste à utiliser des bandes passantes existantes afin de tester la faisabilité de notre approche : le flux UV peut ainsi être reconstruit avec une erreur relative d’environ 20%, une bien meilleure performance qu’avec l’utilisation d’indices solaires. Afin de limiter les problèmes de dégradation liés à l’utilisation des filtres, nous proposons un instrument d’un genre nouveau basé uniquement sur des détecteurs à larges bande interdite permettant de sélectionner une bande spectrale (notamment pour l’UV à partir de 120 nm). Un tel radiomètre permettrait de reconstruire les raies spectrales importantes pour la spécification de la thermosphère terrestre avec une bonne précision. Enfin, une modélisation de l’impact du flux UV solaire sur l’atmosphère de Ganymède est exposée. Les émissions atmosphériques pour quelques espèces sont alors calculées, afin de proposer quelques recommandations pour les futures missions pour Jupiter. / The knowledge of the solar spectral irradiance in the UV and its variation in time is a key problem in aeronomy but also in climatology and in solar physics. While the Extreme UV (10-121 nm) range is important for thermosphere/ionosphere specification, the Far UV and Middle UV ranges are essential for climate modelling. However, the continuous monitoring of the UV irradiance is a difficult task. Space instruments are indeed suffering from ageing but also signal contamination of many kinds. Because of the lack of long-term measurements of the whole UV range, most thermosphere/ionosphere and climate models rely today on proxies for the solar irradiance, which may however not reflect very well the variability. As an alternative, we proposed in this work to use a few radiometers with properly chosen passbands in order to reconstruct the solar UV irradiance. Using a multivariate statistical approach, we first characterize the high redundancy as well as the different features of the solar UV irradiance. With four passbands from already existing instrument, we test our concept : the solar UV flux is reconstructed with a relative error of about 20%. This work proposes then to define a new kind of instrument, which may use wide bandgap materials as detectors selecting moreover the spectral range without using filters. Filters are indeed very sensitive to the degradation. This new instrument could reconstruct very well some spectral lines important to the Earth thermosphere specification. This thesis finally proposes to model the impact of the solar UV flux on the atmosphere of Ganymede. We predict some atmospheric emissions in the framework of future space mission to Jupiter.
|
2 |
Reconstruction empirique du spectre ultraviolet solaire / Empirical reconstruction of the solar ultraviolet spectrumVuiets, Anatoliy 24 March 2015 (has links)
L’irradiance spectrale solaire (SSI) dans la bande ultraviolette est un paramètre-clé pour la spécification de la moyenne et la haute atmosphère terrestre. Elle est requise dans de nombreuses applications en météorologie de l’espace, et aussi pour l’étude du climat. Or les observations souffrent de plusieurs défauts : manque de couverture spectrale et temporelle permanente, dégradation des capteurs, désaccords entre les instruments, etc. Plusieurs modèles de reconstruction de la SSI ont été développés pour pallier à ces difficultés. Chacun souffre de défauts, et la reconstruction du spectre en-dessous de 120nm est un réel défi. C’est dans ce contexte que nous avons développé un modèle empirique, qui recourt au champ magnétique photosphérique pour reconstruire les variations du spectre solaire. Ce modèle décompose les magnétogrammes solaires en différentes structures qui sont classées à partir de leur aire (et non sur la base de leur intensité, comme dans la plupart des autres modèles). La signature spectrale de ces structures est déduite des observations, et non pas imposée par des modèles de l’atmosphère solaire. La qualité de la reconstruction s’avère être comparable à celle d’autres modèles. Parmi les principaux résultats, relevons que deux classes seulement de structures solaires suffisent à reproduire correctement la variabilité spectrale solaire. En outre, seule une faible résolution radiale suffit pour reproduire les variations de centre-bord. Enfin, nous montrons que l’amélioration apportée par la décomposition du modèle en deux constantes de temps peut être attribuée à l’effet des raies optiquement minces. / The spectrally-resolved radiative output of the Sun (SSI) in the UV band, i.e. at wavelengths below 300 nm, is a key quantity for specifying the state of the middle and upper terrestrial atmosphere. This quantity is required in numerous space weather applications, and also for climate studies. Unfortunately, SSI observations suffer from several problems : they have numerous spectral and temporal gaps, instruments are prone to degradation and often disagree, etc. This has stimulated the development of various types of SSI models. Proxy-based models suffer from lack of the physical interpretation and are as good as the proxies are. Semi-empirical models do not perform well below 300 nm, where the local thermodynamic equilibrium approximation does not hold anymore. We have developed an empirical model, which assumes that variations in the SSI are driven by solar surface magnetic flux. This model proceeds by segmenting solar magnetograms into different structures. In contrast to existing models, these features are classified by their area (and not their intensity), and their spectral signatures are derived from the observations (and not from models). The quality of the reconstruction is comparable to that of other models. More importantly, we find that two classes only of solar features are required to properly reproduce the spectral variability. Furthermore, we find that a coarse radial resolution suffices to account for geometrical line-of-sight effects. Finally, we show how the performance of the model on different time-scales is related to the optical thickness of the emission lines.
|
Page generated in 0.049 seconds