Spelling suggestions: "subject:"méthanation duu CO2"" "subject:"méthanation dud CO2""
1 |
Etude dynamique du procédé de production de méthane à partir d’hydrogène électrolytique basse température / Study of Process Dynamics of Methane Production from Low Temperature Electrolytic HydrogenKezibri, Nouaamane 30 November 2018 (has links)
Ce travail s’inscrit dans le cadre de l’étude d’un système de stockage et de restitution des surplus d’énergie électrique de sources renouvelables. L’objectif de l’étude est d’évaluer la capacité du concept à absorber l’intermittence de la production électrique à travers l’analyse de la flexibilité des procédés choisis. En phase de stockage, l’unité utilise un procédé d’électrolyse basse température à membrane échangeuse de proton (PEM) pour produire l’équivalent de 200 MW d’hydrogène. Ce gaz sera combiné au dioxyde de carbone dans une série de réacteurs de méthanation pour former l’équivalent de 155 MW de substitut de gaz naturel. La phase de déstockage est réalisée au sein d’un cycle d’oxy-combustion d’une puissance installée de 480 MW. Ce cycle permet de restituer l’énergie contenue dans les gaz stockés et de produire le CO2 requis pour le procédé de méthanation. L’étude énergétique en régime stationnaire de cette installation montre que l’efficacité du procédé d’électrolyse atteint 69,3%, celle du procédé de méthanation 82,2% et celle du cycle d’oxy-combustion 51,8% sur PCS. L’analyse en régime transitoire de la phase Power-to-Gas permet d’identifier les stratégies de contrôle adaptées aux variations temporelles de conditions opératoires. Ces stratégies visent à permettre au système de couvrir des plages de fonctionnement plus larges et d’absorber plus de puissance électrique. Il s’est avéré que la production du méthane de synthèse peut s’étendre sur des plages de fonctionnement allant de 48% à 100% de la puissance nominale sans aucun apport énergétique extérieur. Le cas d’étude réalisé pour le couplage de l’unité avec un parc éolien de 300 MW permet d’évaluer les performances du Power-to-Gas en fonction de la variation de la source électrique. / The present work deals with the conceptual study and process design of a storage and recovery unit for renewable energy. The suggested concept is able to absorb the intermittency of the electrical production as a result of the flexibility of the chosen processes. During the storage phase, the unit uses a Proton Exchange Membrane electrolysis system to produce 200 MW of hydrogen, which will then be combined to carbon dioxide in a series of methanation reactors to generate up to 155 MW of Substitute Natural Gas. The recovery phase is carried out in a 480 MW oxy-combustion cycle which is not only able to restore the electrical energy but also provides the required carbon dioxide for the methanation process. The conducted steady state evaluation as well as the sensitivity analysis for the studied plant showed that the overall efficiency on HHV basis can reach up to 69.3% for the electrolysis process, 82.2% for the methanation process and 51.8% for the oxy-combustion cycle. The follow-up unsteady state analysis of the Power-to-Gas process aimed to identify the necessary control strategies adapted to operating conditions variation over time. Such strategies should enable the system to cover a wider load range and subsequently absorb more electrical power. It was found that, by making the right adjustments, the production of synthetic methane can be fulfilled at ranges between 48% and 100% of the nominal power without any external energy requirement. A case study was carried out where the unit was coupled with a 300 MW wind to assess the performance of the Power-to-Gas process under fluctuating electrical source conditions.
|
2 |
Étude expérimentale et modélisation dynamique d'un réacteur catalytique modulaire pour l'hydrogénation du CO2 en méthane / Experimental study and dynamic simulation of a catalytic reactor for the hydrogenation of CO2 into methaneTry, Rasmey 22 March 2018 (has links)
Ce travail s'inscrit dans le cadre Power-to-Gas, dont l'objectif est de stocker les surplus d'énergie électrique issus de sources renouvelables sous forme d'énergie chimique, en l'occurrence le méthane. L'intermittence de la production électrique requiert une certaine flexibilité du système de méthanation par rapport aux variations temporelles de conditions opératoires. Dans ce contexte, les travaux effectués au cours de cette thèse sont dédiés à l'étude du comportement dynamique d'un réacteur-échangeur de méthanation à lit fixe catalytique. Une maquette de réacteur finement instrumentée en thermocouples est conçue et permet l'étude expérimentale des performances du réacteur et de son comportement thermique en régime dynamique. En particulier, des phénomènes de fronts d'onde thermique, de dépassements et de réponses inverses sont retrouvés. Les paramètres hydrodynamiques et thermiques du lit ont été caractérisés expérimentalement. Une modélisation de la maquette de réacteur-échangeur est également établie et permet de simuler son fonctionnement. Les résultats expérimentaux sont comparés aux résultats de simulation, permettant l'analyse précise des comportements observés dans le réacteur / This work is within the Power-to-Gas framework, which aims to store the electrical energy surpluses from renewable energy in chemicals, here the methane. The intermittency of the electrical production requires the methanation system to have a certain level of flexibility with respect to temporal changes of operational conditions. In this context, the work carried out during this thesis is dedicated to the study of the dynamic behavior of a catalytic fixed-bed heat-exchanger methanation reactor. A reactor-exchanger highly equipped with thermocouples is designed and is used for the experimental study of the performances and the dynamics behavior of such a reactor. In particular, phenomena of thermal wave fronts, overshoot and inverse responses are found. The hydrodynamic and thermal parameters of the bed have been experimentally characterized. Modeling of the reactor-exchanger is also established and simulations of the reactor behavior are done. The experimental results are compared with the simulation results, allowing the precise analysis of the behaviors observed in the reactor
|
3 |
Développement et optimisation de réacteurs structurés à base de mousses cellulaires pour l'intensification de la valorisation de CO2 en méthane / Development and optimization of open cell foam-based platelet milli-reactor for the intensification and the valorisation of CO2 methanationFrey, Myriam 03 May 2016 (has links)
En réponse aux divers accords internationaux pour réduire l’émission de gaz à effet de serre et limiter leur impact sur le réchauffement climatique, une transition énergétique visant à augmenter la part des énergies renouvelables est en cours. Le concept du Power-to-Gas l’une des solutions permettant un stockage/déstockage adapté à cette énergie intermittente. Cependant, la réaction de méthanation, fortement exothermique, nécessite un procédé performant pour l’évacuation de la chaleur générée au cours de la réaction. Au cours de cette thèse, un milli-réacteur structuré, rempli avec une mousse cellulaire recouverte par un catalyseur (Ni/Cérine-Zircone), a été développé pour répondre à cette problématique. Le réacteur a été caractérisé par une étude hydrodynamique et une étude thermique, la seconde permis de visualiser la formation de points chauds. L’ajout de nanofibres de carbone a permis une meilleure gestion de la chaleur générée, limitant ainsi la désactivation du catalyseur (frittage). Des tests catalytiques réalisés à plus grande échelle ont montré l’intérêt des lits structurés vis-à-vis des lits fixes, classiquement utilisés dans les procédés, avec une élévation de température modérée d’environ 25°C. / In response to the different international agreements to reduce the emission of greenhouse gases and limit their impact on global warming, an energy transition is in progress to increase the share of renewable energies. The Power-to-Gas concept is one of many solutions proposed to answer the need to charge and discharge this intermittent energy source. However, the methanation reaction, highly exothermal, needs a process able to efficiently evacuate the heat produced by the reaction. During this thesis, a structure milli-reactor, filled with an open cell foam coated with a catalyst (Ni/Ceria-Zirconia), was developed as an answer to this issue. The reactor was hydrodynamically and thermally characterized. The second one allowed us to evidence hot spots formation. The presence of nanofibres allowed better control of the heat generated, limiting the deactivation of the catalyst (sintering). Catalytic tests, performed on a small scale pilot, clearly showed the advantage of structured beds compared to fixed bed, classically used in processes, with a moderate heat elevation around 25°C.
|
Page generated in 0.1129 seconds