Spelling suggestions: "subject:"méthode dess éléments naturel"" "subject:"méthode dess éléments naturelle""
1 |
Nouvelle approche pour la modélisation des problèmes multi-échelles en mécanique : la méthode 95/5Missoum Benziane, Djamel 15 May 2007 (has links) (PDF)
Nous proposons une nouvelle approche de modélisation micro/macro pour les problèmes multi échelles. Cette approche se destine aux matériaux ayant deux longueurs caractéristiques de variation des propriétés : l'une microscopique et l'autre macroscopique. Ce qui signifie qu'il n'est pas possible de définir une relation de comportement macroscopique unique pour l'ensemble du système étudié. Nous proposons une méthode de discrétisation pour laquelle la majeure partie du domaine étudié est modélisée exclusivement à l'échelle macroscopique, seules quelques zones relativement petites, appelées motifs microscopiques, sont modélisées à l'échelle microscopique. La mise en oeuvre de la méthode de modélisation repose sur : un principe d'extension du comportement de l'échelle microscopique afin d'en déduire une relation de comportement numérique à l'échelle macroscopique ; la méthode des éléments naturels contraints CNEM, afin de pouvoir insérer les motifs microscopiques dans une discrétisation macroscopique ; et une méthode de résolution introduisant décomposition de domaine et réduction de modèle pour accélérer le calcul et tirer profit des calculateurs à architecture parallèle. Nous avons prouvé l'efficacité de notre approche sur des exemples académiques avec une bonne estimation de la solution, et une distribution de l'erreur homogène sur tout le domaine aux échelles microscopique et macroscopique même sur les bords.
|
2 |
Nouvelles approches sans maillage basées sur la méthode des éléments naturels pour la simulation numérique des procédés de mise en formeYvonnet, Julien 14 December 2004 (has links) (PDF)
La méthode des éléments finis, bien qu'employée dans la grande majorité des codes de simulation industriels, présente un certain nombre de limitations pour la simulation des procédés de mise en forme, notamment lors de grandes déformations, de la localisation des phénomènes comme c'est le cas pour la formation de bandes de cisaillement ou de fissures. La nécessité de reconstruire un maillage vérifiant un certain nombre de critères de qualité entraîne des coûts de calcul additionnels, ainsi que des problèmes de robustesse, particulièrement pour les problèmes tridimensionnels complexes. Depuis une dizaine d'années, de nouvelles méthodes numériques, alternatives à la méthode des éléments finis, ont été développées. Ces méthodes, appelées méthodes sans maillage, construisent une partie ou la totalité de l'approximation entièrement à partir du nuage de nœuds. L'objectif de cette thèse est de développer un certain nombre d'outils numériques basés sur les concepts précédemment cités affin de mettre au point un logiciel de simulation des procédés permettant de surmonter certaines des difficultés liées à la méthode des éléments finis. La technique proposée, baptisée méthode C-NEM, est une extension de la méthode des éléments naturels (NEM) dont les améliorations permettent un traitement plus simple pour l'analyse des procédés. La première partie présente la méthode et son intérêt pour les problèmes présentant des discontinuités fixes ou mobiles. La deuxième partie présente des approches permettant de traiter les problèmes en grandes déformation avec éventuellement une localisation des phénomènes. La dernière partie illustre la méthode au travers d'exemples numériques.
|
3 |
Mise en oeuvre de la méthode des éléments naturels contrainte en 3D : application au cisaillage adiabatiqueIlloul, Amran Lounès 09 July 2008 (has links) (PDF)
Ce travail porte sur la mise en oeuvre en 3d de la méthode des éléments naturels contrainte CNEM en vue de son utilisation pour la simulation du cisaillage à grande vitesse. La CNEM est une approche à mi-chemin des approches sans maillage et des éléments finis. La construction de son interpolation utilise le diagramme de Voronoï contraint (dual du maillage de Delaunay contraint) associé à un nuage de noeud réparti sur le domaine étudié muni d'une description de sa frontière. La mise en oeuvre de la CNEM comporte trois aspects principaux : i) la construction du diagramme de Voronoï contraint, ii) le calcul des fonctions de forme éléments naturels Sibson, iii) la discrétisation d'une formulation variationnelle générique par utilisation de l'intégration nodale stabilisée conforme, SCNI, introduite par Chen et Al en 2001. Une partie importante de ce travail concerne les deux derniers points. Pour le calcul des fonctions de formes Sibson 3d cinq algorithmes sont présentés, dont deux développés au cours de la thèse, et sont comparés en terme de performance. Par ailleurs, une discrétisation est proposée pour être applicable au cas des domaines fortement non convexes. La mise en oeuvre proposée est validée sur des exemples en élasticité linéaire 3d en petites perturbations (vis à vis de solutions analytiques et de résultats éléments finis) puis en grandes transformations (test de la barre de Taylor). L'application de la CNEM au cisaillage grande vitesse est finalement abordée. Les développements effectués ont été intégrés à la plateforme logicielle Nessy. Cette plateforme a pour objectif la capitalisation du savoir faire du LMSP en simulation numérique.
|
4 |
Méthode des éléments naturels appliquée aux problèmes électromagnétiques : développement d’un outil de modélisation et de conception des dispositifs électriques / Natural elements method applied to electromagnetic problems : development of a modeling tool for electric devices conceptionBotelho, Diego Pereira 18 December 2015 (has links)
Afin de surmonter les difficultés de la méthode des éléments finis (MEF) liées à la forte dépendance de la solution au maillage, des méthodes sans maillage ont été développées durant les 20 dernières années. Ces techniques ont l’avantage de procurer des approximations très régulières, capables de répondre de manière plus satisfaisante aux exigences croissantes des applications. Cependant, certaines caractéristiques intrinsèques à la plupart de ces approches rendent leur mise en œuvre difficile : souvent des techniques supplémentaires spécifiques doivent être mises en place pour imposer les conditions aux limites et traiter les discontinuités physiques. Récemment, la méthode des éléments naturels (MEN) est apparue, se basant sur les concepts de diagramme de Voronoï et de voisins naturels. C’est une approche capable d’associer les avantages d’une approximation très régulière propre aux méthodes sans maillage et une mise en œuvre quasiment identique à la MEF. Cette thèse porte sur l’étude et le développement de la MEN dédiée aux applications du génie électrique. Le but principal de ce travail exploratoire est l’étude des limitations ainsi que des avantages et du potentiel de la MEN et ses concepts sous-jacents. Les analyses de performances de la méthode sont présentées. Sur les points ouverts tels que l’intégration numérique, la montée en ordre et l’interpolation vectorielle, des développements originaux sont proposés. / In order to overcome the limitations related to the finite element method’s (FEM) narrow dependency of the solution on the mesh, meshless or meshfree methods were developed over the last 20 years. These techniques present the advantage of yielding very smooth approximations, being able to respond more adequately to the increasing demands of applications. However, some intrinsic features of most of these approaches make the implementation difficult, often requiring additional specific techniques for the imposition of the boundary conditions and the treatment of physical discontinuities. Recently, the natural element method (NEM) was developed. This approach, based on the Voronoi diagram and the “natural neighbors” concepts, combines the advantages of very smooth approximations and a FEM-like implementation. This thesis focuses on the study and development of the NEM, dedicated to electrical engineering applications. The main purpose of this exploratory work is the study of the limitations, benefits and the potential of the NEM and its underlying concepts. Several analyses of NEM’s performance are presented. As far as the numerical integration, higher order approximations and the vector interpolation are concerned, original developments are proposed.
|
5 |
Étude de l'apparition des contraintes résiduelles dans le procédé d'empilement par soudage et consolidation en continu de composites thermoplastiquesLemarchand, François 03 December 2008 (has links) (PDF)
Nos travaux se sont intéressés à la modélisation de l'apparition des contraintes résiduelles dans le procédé d'empilement par soudage et consolidation en continu développé dans l'industrie aéronautique. Dans les conditions standard d'élaboration, les pièces réalisées par ce type de procédé sont le siège d'importantes contraintes résiduelles. L'ignorance de leur origine et développement est un frein important à la validation industriel de ce procédé prometteur. Dans cette perspective, l'originalité de l'étude a été de développer une méthode de modélisation numérique multi-échelle et multi-physique permettant de réaliser une modélisation couplée aux échelles macroscopique et microscopique du phénomène de l'apparition des contraintes résiduelles, au cours du procédé. L'échelle microscopique, décrite à l'aide de la méthode des éléments naturels contraints (CNEM), apporte à l'échelle macroscopique les propriétés thermomécaniques homogénéisées du matériau à chaque pas de temps. L'échelle macroscopique apporte à l'échelle microscopique les conditions aux limites (températures, déplacements), qui permettent de déterminer les champs de température, de déformation et de contrainte microscopiques dans le matériau au cours du temps. Les résultats obtenus en terme de validation et d'application de la méthode au procédé d'empilement par chauffage et consolidation en continu sont satisfaisants et prometteurs. La méthode développée peut de plus être aisément appliquée à d'autres types de procédé de mise en forme des composites thermoplastiques.
|
Page generated in 0.1271 seconds