• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem MIA-QSAR de inibidores de acetilcolinesterase = MIA-QSAR modeling of inhibitors actylcholinesterase / MIA-QSAR modeling of inhibitors actylcholinesterase

Bitencourt, Michelle, 1985- 09 April 2012 (has links)
Orientador: Roberto Rittner Neto / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-21T10:40:13Z (GMT). No. of bitstreams: 1 Bitencourt_Michelle_M.pdf: 771721 bytes, checksum: 1771939b9c0680c7375ae9953fca996f (MD5) Previous issue date: 2012 / Resumo: O presente trabalho trata de um estudo sobre compostos que se comportam como inibidores da acetilcolinesterase, uma importante enzima do processo de cognição. A acetilcolinesterase atua na hidrólise da acetilcolina, responsável pela comunicação entre os neurônios. Uma das modalidades para o design racional de fármacos é a estimativa de propriedades biológicas de novas moléculas utilizando métodos computacionais. Análise quantitativa entre estrutura química e atividade biológica (QSAR) é uma dessas técnicas. No presente trabalho, análise multivariada de imagens aplicada em QSAR (MIA-QSAR) foi utilizada para se construírem modelos QSAR preditivos para uma série congênere de carbamatos com atividade anticolinesterásica. Os bons resultados estatísticos da modelagem credenciaram o modelo MIA-QSAR construído a predizer a atividade biológica de alguns novos derivados, potencialmente úteis para o tratamento do Mal de Alzheimer / Abstract: The present work describes the study of some compounds which act as acetylcholinesterase inhibitors a very important enzyme in the cognitive process. zAcetylcholinesterase is responsible by the hydrolysis of acetylcholine, which accounts for the communication among the neurons. One of the approaches for the rational pharmaceuticals design is the estimation of the biological properties of new molecules using computational methods. The quantitative analysis between chemical structure and biological activity (QSAR) is one of these techniques. In the present work, the multivariate analysis of images applied in QSAR (MIA-QSAR) was employed for building predictable QSAR models for a congenial series of carbamates which exhibit anticholinesterase activity. The significant statistical results from this treatment enabled the MIA-QSAR model thus obtained to reliably predict the biological activity of some new derivatives, as potentially useful for the Alzheimer Disease treatment / Mestrado / Ciencias Biomedicas / Mestra em Ciências Médicas

Page generated in 0.0484 seconds