• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Métodos de Elementos Finitos e Diferenças Finitas para o Problema de Helmholtz / Finite Elements and Finite Difference Methods for the Helmholtz Equation

Fernandes, Daniel Thomas 02 March 2009 (has links)
Made available in DSpace on 2015-03-04T18:51:06Z (GMT). No. of bitstreams: 1 tese_danieltf.pdf: 1240547 bytes, checksum: d1fac8fed2c288c3581c57065cf2c0c2 (MD5) Previous issue date: 2009-03-02 / Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / It is well known that classical finite elements or finite difference methods for Helmholtz problem present pollution effects that can severely deteriorate the quality of the approximate solution. To control pollution effects is especially difficult on non uniform meshes. For uniform meshes of square elements pollution effects can be minimized with the Quasi Stabilized Finite Element Method (QSFEM) proposed by Babus\v ska el al, for example. In the present work we initially present two relatively simple Petrov-Galerkin finite element methods, referred here as RPPG (Reduced Pollution Petrov-Galerkin) and QSPG (Quasi Stabilized Petrov-Galerkin), with reasonable robustness to some type of mesh distortion. The QSPG also shows minimal pollution, identical to QSFEM, for uniform meshes with square elements. Next we formulate the QOFD (Quasi Stabilized Finite Difference) method, a finite difference method for unstructured meshes. The QOFD shows great robustness relative to element distortion, but requires extra work to consider non-essential boundary conditions and source terms. Finally we present a Quasi Optimal Petrov-Galerkin (QOPG) finite element method. To formulate the QOPG we use the same approach introduced for the QOFD, leading to the same accuracy and robustness on distorted meshes, but constructed based on consistent variational formulation. Numerical results are presented illustrating the behavior of all methods developed compared to Galerkin, GLS and QSFEM. / É bem sabido que métodos clássicos de elementos finitos e diferenças finitas para o problema de Helmholtz apresentam efeito de poluição, que pode deteriorar seriamente a qualidade da solução aproximada. Controlar o efeito de poluição é especialmente difícil quando são utilizadas malhas não uniformes. Para malhas uniformes com elementos quadrados são conhecidos métodos (p. e. o QSFEM, proposto por Babuska et al) que minimizam a poluição. Neste trabalho apresentamos inicialmente dois métodos de elementos finitos de Petrov-Galerkin com formulação relativamente simples, o RPPG e o QSPG, ambos com razoável robustez para certos tipos de distorções dos elementos. O QSPG apresenta ainda poluição mínima para elementos quadrados. Em seguida é formulado o QOFD, um método de diferenças finitas aplicável a malhas não estruturadas. O QOFD apresenta grande robustez em relação a distorções, mas requer trabalho extra para tratar problemas não homogêneos ou condições de contorno não essenciais. Finalmente é apresentado um novo método de elementos finitos de Petrov-Galerkin, o QOPG, que é formulado aplicando a mesma técnica usada para obter a estabilização do QOFD, obtendo assim a mesma robustez em relação a distorções da malha, com a vantagem de ser um método variacionalmente consistente. Resultados numéricos são apresentados ilustrando o comportamento de todos os métodos desenvolvidos em comparação com os métodos de Galerkin, GLS e QSFEM.
2

Métodos de Elementos Finitos e Diferenças Finitas para o Problema de Helmholtz / Finite Elements and Finite Difference Methods for the Helmholtz Equation

Daniel Thomas Fernandes 02 March 2009 (has links)
É bem sabido que métodos clássicos de elementos finitos e diferenças finitas para o problema de Helmholtz apresentam efeito de poluição, que pode deteriorar seriamente a qualidade da solução aproximada. Controlar o efeito de poluição é especialmente difícil quando são utilizadas malhas não uniformes. Para malhas uniformes com elementos quadrados são conhecidos métodos (p. e. o QSFEM, proposto por Babuska et al) que minimizam a poluição. Neste trabalho apresentamos inicialmente dois métodos de elementos finitos de Petrov-Galerkin com formulação relativamente simples, o RPPG e o QSPG, ambos com razoável robustez para certos tipos de distorções dos elementos. O QSPG apresenta ainda poluição mínima para elementos quadrados. Em seguida é formulado o QOFD, um método de diferenças finitas aplicável a malhas não estruturadas. O QOFD apresenta grande robustez em relação a distorções, mas requer trabalho extra para tratar problemas não homogêneos ou condições de contorno não essenciais. Finalmente é apresentado um novo método de elementos finitos de Petrov-Galerkin, o QOPG, que é formulado aplicando a mesma técnica usada para obter a estabilização do QOFD, obtendo assim a mesma robustez em relação a distorções da malha, com a vantagem de ser um método variacionalmente consistente. Resultados numéricos são apresentados ilustrando o comportamento de todos os métodos desenvolvidos em comparação com os métodos de Galerkin, GLS e QSFEM. / It is well known that classical finite elements or finite difference methods for Helmholtz problem present pollution effects that can severely deteriorate the quality of the approximate solution. To control pollution effects is especially difficult on non uniform meshes. For uniform meshes of square elements pollution effects can be minimized with the Quasi Stabilized Finite Element Method (QSFEM) proposed by Babusv ska el al, for example. In the present work we initially present two relatively simple Petrov-Galerkin finite element methods, referred here as RPPG (Reduced Pollution Petrov-Galerkin) and QSPG (Quasi Stabilized Petrov-Galerkin), with reasonable robustness to some type of mesh distortion. The QSPG also shows minimal pollution, identical to QSFEM, for uniform meshes with square elements. Next we formulate the QOFD (Quasi Stabilized Finite Difference) method, a finite difference method for unstructured meshes. The QOFD shows great robustness relative to element distortion, but requires extra work to consider non-essential boundary conditions and source terms. Finally we present a Quasi Optimal Petrov-Galerkin (QOPG) finite element method. To formulate the QOPG we use the same approach introduced for the QOFD, leading to the same accuracy and robustness on distorted meshes, but constructed based on consistent variational formulation. Numerical results are presented illustrating the behavior of all methods developed compared to Galerkin, GLS and QSFEM.
3

Método compacto de diferenças finitas para resolver equações de Schrödinger não lineares com dispersão de quarta ordem / Compact finite Diference method to solve nonlinear Schrödinger equations with fourth order dispersion

Jesus, Hugo Naves 16 September 2016 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2016-11-10T11:15:34Z No. of bitstreams: 2 Dissertação - Hugo Naves de Jesus - 2016.pdf: 1851851 bytes, checksum: 71cb8f26f4f38eb5f89d99aafc926b66 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-11-10T17:47:53Z (GMT) No. of bitstreams: 2 Dissertação - Hugo Naves de Jesus - 2016.pdf: 1851851 bytes, checksum: 71cb8f26f4f38eb5f89d99aafc926b66 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-11-10T17:47:53Z (GMT). No. of bitstreams: 2 Dissertação - Hugo Naves de Jesus - 2016.pdf: 1851851 bytes, checksum: 71cb8f26f4f38eb5f89d99aafc926b66 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-09-16 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Finite difference schemes belong to a class of numerical methods used to approximate derivatives. They are widely used to find approximations to differential equations. There are a lot of numerical methods, whose deductions are made through expansions in Taylor Series. Depending on the manner in which expansion is made, it can be combined with other expansions to obtain derivatives with better numerical approximations. Usually when we get numerical derivative with better approaches, it is necessary to increase the amount of points used in the grid. An alternative to this problem are compact methods, which achieve better approximations for the same derivative but without increasing the number of mesh points. This work is an attempt to develop the Compact-SSFD method for the Schrödinger Equation Nonlinear Fourth Order. SSFD methods are used to separate the parts of a differential equation so that each part can be solved separately. For example in the case of non-linear differential equations it is often used to separate the linear parts of nonlinear parts. In Compact-SSFD methods nonlinear parts are resolved exactly as the linear are resolved using compact methods. Our work is inspired in the Dehghan and Taleei’s work where was used the Compact-SSFD method for solving numerically the equation Nonlinear Schrödinger. Before we try to develop our method, the results of the authors was correctly reproduced. But when we try to deduce a method analogous to the differential equation we wanted to solve, which also involves derived from fourth order, we realized that a Compact type method does not get as trivially as in the case of used to approach second-order derivatives. / Métodos de diferenças finitas pertencem a uma classe de métodos numéricos usados para se aproximar derivadas. Eles são amplamente usados para encontrar-se soluções numéricas para equações diferenciais. Há uma grande quantidade de métodos numéricos, cuja as deduções são feitas através de expansões em séries de Taylor. Dependendo da forma em que uma expansão é feita, ela pode ser combinada com outras expansões para obter-se derivadas numéricas com melhores aproximações. Geralmente quando obtemos derivadas numéricas com aproximações melhores, é necessário aumentar-se a quantidade de pontos usados no domínio discretizado. Uma alternativa a este problema são os chamados métodos compact, que obtêm melhores aproximações para a mesma derivada mas sem precisar aumentar a quantidade de pontos da malha. Este trabalho é uma tentativa de desenvolver-se um método Compact-SSFD para a Equação de Schrödinger Não Linear de Quarta Ordem. Métodos SSFD são usados para separar-se as partes de uma equação diferencial tal que cada parte possa ser resolvida separadamente. Por exemplo no caso de equações diferenciais não lineares ele é bastante usado para separar-se as partes lineares das partes não lineares. Nos métodos Compact-SSFD as partes não lineares são resolvidas exatamente enquanto as lineares são resolvidas usando-se métodos compact. Nos baseamos no trabalho de Dehghan e Taleei onde foi usado o Método Compact-SSFD para resolver-se numericamente a Equação de Schrödinger Não Linear. Antes de tentarmos desenvolver nosso método, reproduzimos corretamente os resultados dos autores. Mas ao tentarmos deduzir um método análogo para a equação diferencial que queríamos resolver, que envolve também derivadas de quarta ordem, percebemos que um método do tipo Compact não se obtêm tão trivialmente como no caso dos usados para aproximar-se derivadas de segunda ordem.

Page generated in 0.0965 seconds