• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

String-averaging incremental subgradient methods for constrained convex optimization problems / Média das sequências e métodos de subgradientes incrementais para problemas de otimização convexa com restrições

Oliveira, Rafael Massambone de 12 July 2017 (has links)
In this doctoral thesis, we propose new iterative methods for solving a class of convex optimization problems. In general, we consider problems in which the objective function is composed of a finite sum of convex functions and the set of constraints is, at least, convex and closed. The iterative methods we propose are basically designed through the combination of incremental subgradient methods and string-averaging algorithms. Furthermore, in order to obtain methods able to solve optimization problems with many constraints (and possibly in high dimensions), generally given by convex functions, our analysis includes an operator that calculates approximate projections onto the feasible set, instead of the Euclidean projection. This feature is employed in the two methods we propose; one deterministic and the other stochastic. A convergence analysis is proposed for both methods and numerical experiments are performed in order to verify their applicability, especially in large scale problems. / Nesta tese de doutorado, propomos novos métodos iterativos para a solução de uma classe de problemas de otimização convexa. Em geral, consideramos problemas nos quais a função objetivo é composta por uma soma finita de funções convexas e o conjunto de restrições é, pelo menos, convexo e fechado. Os métodos iterativos que propomos são criados, basicamente, através da junção de métodos de subgradientes incrementais e do algoritmo de média das sequências. Além disso, visando obter métodos flexíveis para soluções de problemas de otimização com muitas restrições (e possivelmente em altas dimensões), dadas em geral por funções convexas, a nossa análise inclui um operador que calcula projeções aproximadas sobre o conjunto viável, no lugar da projeção Euclideana. Essa característica é empregada nos dois métodos que propomos; um determinístico e o outro estocástico. Uma análise de convergência é proposta para ambos os métodos e experimentos numéricos são realizados a fim de verificar a sua aplicabilidade, principalmente em problemas de grande escala.
2

String-averaging incremental subgradient methods for constrained convex optimization problems / Média das sequências e métodos de subgradientes incrementais para problemas de otimização convexa com restrições

Rafael Massambone de Oliveira 12 July 2017 (has links)
In this doctoral thesis, we propose new iterative methods for solving a class of convex optimization problems. In general, we consider problems in which the objective function is composed of a finite sum of convex functions and the set of constraints is, at least, convex and closed. The iterative methods we propose are basically designed through the combination of incremental subgradient methods and string-averaging algorithms. Furthermore, in order to obtain methods able to solve optimization problems with many constraints (and possibly in high dimensions), generally given by convex functions, our analysis includes an operator that calculates approximate projections onto the feasible set, instead of the Euclidean projection. This feature is employed in the two methods we propose; one deterministic and the other stochastic. A convergence analysis is proposed for both methods and numerical experiments are performed in order to verify their applicability, especially in large scale problems. / Nesta tese de doutorado, propomos novos métodos iterativos para a solução de uma classe de problemas de otimização convexa. Em geral, consideramos problemas nos quais a função objetivo é composta por uma soma finita de funções convexas e o conjunto de restrições é, pelo menos, convexo e fechado. Os métodos iterativos que propomos são criados, basicamente, através da junção de métodos de subgradientes incrementais e do algoritmo de média das sequências. Além disso, visando obter métodos flexíveis para soluções de problemas de otimização com muitas restrições (e possivelmente em altas dimensões), dadas em geral por funções convexas, a nossa análise inclui um operador que calcula projeções aproximadas sobre o conjunto viável, no lugar da projeção Euclideana. Essa característica é empregada nos dois métodos que propomos; um determinístico e o outro estocástico. Uma análise de convergência é proposta para ambos os métodos e experimentos numéricos são realizados a fim de verificar a sua aplicabilidade, principalmente em problemas de grande escala.

Page generated in 0.1339 seconds