• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Módulos coeficientes em álgebras / Coefficient modules in algebras

Silva, Marcela Duarte da 19 April 2010 (has links)
Em 1991, Kishor Shah definiu e estudou os ideais coeficientes \'I IND. \' , para todo inteiro k = 0, . . . , d, associados a um ideal m-primário I de um anel Noetheriano local d-dimensional, (R,m). Esses ideais, \'I IND. \' , são os maiores ideais de R que contem o ideal I tais que os primeiros k + 1 coeficientes dos polinômios de Hilbert-Samuel de I e \'I IND. \' coincidem. O resultado principal do trabalho de Kishor Shah é provar teoremas de estrutura para estes ideais. Na sua Tese de Doutorado, Jung-Chen Liu generalizou alguns aspectos do trabalho de Kishor Shah para R-submódulos E de \'R POT. p\', definindo os submódulos coeficientes \'E IND. \' , para k = 0, . . . , d + p 1. Por´em Jung-Chen Liu não provou o teorema de estrutura para tais módulos coeficientes. Neste trabalho, estenderemos os trabalhos de Kishor Shah e de Jung-Chen Liu para R-submódulos E \'ESTÁ CONTIDO EM\' F de \'R POT. p\', onde \'ell IND. R\' (\'F SOBRE E\' ) < \'INFINITO\', definindo os módulos coeficientes \'E POT F IND. \', para todo inteiro k = 0, . . . , d + p 1 e provando o teorema de estrutura para tais módulos / In 1991, Kishor Shah defined and studied coeficient ideals \'I ind . \' , for integers k = 0, . . . , d, associated to an ideal m-primary I of a Noetherian local ring of dimension, (R,m). This ideals, \'I ind \'. , are the biggest ideals of R that contains the ideal I such that the first k+1 Hilbert-Samuel coefficients of I and \'I IND. \' are igual. The main result of Kishor Shahs work is to prove the struture theorem of such ideals. In his P.h.D thesis, Jung-Chen Liu generalized some aspects of Kishor Shahs work in the case of R-submodules E of \'R POT. p\', defining the coefficients submodules \'E IND. , \' for integers k = 0, . . . , d+p1. But Jung-Chen Liu didnt prove the struture theorem for such coefficients modules. In this work, we extended the works of Kishor Shah and of Jung-Chen Liu for R-submodules E \'ARE THIS CONTAINED\' F of \'R POT. p\', where \'ell IND. R (\'F ON E\' ) < \'THE INFINITE\' , defining the coefficients modules \'E POT. F IND. {k}\', for integers k = 0, . . . , d + p 1 and proving the struture theorem for such modules
2

Módulos coeficientes em álgebras / Coefficient modules in algebras

Marcela Duarte da Silva 19 April 2010 (has links)
Em 1991, Kishor Shah definiu e estudou os ideais coeficientes \'I IND. \' , para todo inteiro k = 0, . . . , d, associados a um ideal m-primário I de um anel Noetheriano local d-dimensional, (R,m). Esses ideais, \'I IND. \' , são os maiores ideais de R que contem o ideal I tais que os primeiros k + 1 coeficientes dos polinômios de Hilbert-Samuel de I e \'I IND. \' coincidem. O resultado principal do trabalho de Kishor Shah é provar teoremas de estrutura para estes ideais. Na sua Tese de Doutorado, Jung-Chen Liu generalizou alguns aspectos do trabalho de Kishor Shah para R-submódulos E de \'R POT. p\', definindo os submódulos coeficientes \'E IND. \' , para k = 0, . . . , d + p 1. Por´em Jung-Chen Liu não provou o teorema de estrutura para tais módulos coeficientes. Neste trabalho, estenderemos os trabalhos de Kishor Shah e de Jung-Chen Liu para R-submódulos E \'ESTÁ CONTIDO EM\' F de \'R POT. p\', onde \'ell IND. R\' (\'F SOBRE E\' ) < \'INFINITO\', definindo os módulos coeficientes \'E POT F IND. \', para todo inteiro k = 0, . . . , d + p 1 e provando o teorema de estrutura para tais módulos / In 1991, Kishor Shah defined and studied coeficient ideals \'I ind . \' , for integers k = 0, . . . , d, associated to an ideal m-primary I of a Noetherian local ring of dimension, (R,m). This ideals, \'I ind \'. , are the biggest ideals of R that contains the ideal I such that the first k+1 Hilbert-Samuel coefficients of I and \'I IND. \' are igual. The main result of Kishor Shahs work is to prove the struture theorem of such ideals. In his P.h.D thesis, Jung-Chen Liu generalized some aspects of Kishor Shahs work in the case of R-submodules E of \'R POT. p\', defining the coefficients submodules \'E IND. , \' for integers k = 0, . . . , d+p1. But Jung-Chen Liu didnt prove the struture theorem for such coefficients modules. In this work, we extended the works of Kishor Shah and of Jung-Chen Liu for R-submodules E \'ARE THIS CONTAINED\' F of \'R POT. p\', where \'ell IND. R (\'F ON E\' ) < \'THE INFINITE\' , defining the coefficients modules \'E POT. F IND. {k}\', for integers k = 0, . . . , d + p 1 and proving the struture theorem for such modules

Page generated in 0.0869 seconds