Spelling suggestions: "subject:"múltiplos cenário dde geração"" "subject:"múltiplos cenário dee geração""
1 |
Planejamento da expansão de sistemas de transmissão considerando múltiplos cenários de geração /Freitas, Patrícia Fernanda da Silva. January 2018 (has links)
Orientador: Rubén Augusto Romero Lázaro / Resumo: Tradicionalmente, o problema de Planejamento da Expansão de Sistemas de Transmissão (PEST) é solucionado considerando apenas um único cenário de geração, embora sistemas elétricos reais operem em diferentes cenários de geração. Nessa pesquisa são propostos modelos matemáticos para resolver o problema de PEST, considerando múltiplos cenários de geração de forma que o plano de expansão obtido permita uma operação adequada do sistema. No modelo proposto, o custo de investimento é maior em relação aos planos de expansão encontrados pelo planejamento tradicional, que considera apenas um cenário de geração. Para reduzir o correspondente custo de investimento são apresentadas estratégias eficientes para encontrar planos de expansão para o problema de PEST considerando múltiplos cenários. As estratégias utilizadas foram: permitir pequenos cortes de carga; permitir o deslocamento do nível de geração em uma pequena faixa de geração mínima e máxima em relação à geração ideal e permitir pequenas sobrecargas nas linhas de transmissão. Adicionalmente, uma combinação entre essas estratégias é apresentada e o problema PEST também foi resolvido para o planejamento multiestágio, considerando múltiplos cenários de geração. O método proposto foi implementado com o uso da linguagem de modelagem algébrica AMPL e resolvido com o uso do solver comercial CPLEX. Os resultados encontrados correspondem à propostas de solução que são válidas para diferentes cenários de geração e apresentam diferentes alt... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Traditionally, the Transmission Network Expansion Problem is solved considering only a single generation scenario. However, a real power system operates in different generation scenarios. This work presents the disjunctive linear model for the Transmission Network Expansion Problem considering multiple generation scenarios to provide a single expansion plan, which must operate in a appropriate way in each one of the different scenarios. The investment cost of the proposed model is greater in relation to the traditional expansion plans, that consider single generation scenario. In order to reduce the investment costs, efficient strategies are presented to find the expansion plans for multiples scenarios. Therefore those strategies are: allow small load cuts; allow generation level displacement in a narrow generation range in relation to the ideal one; and allow small overload in the transmission lines. Moreover, a combination between those strategies is shown and the Transmission Network Expansion Problem was also solved for multistage planning for multiple generation scenarios. The proposed method was implemented using A Mathematical Programming Language (AMPL) and the commercial solver CPLEX. The results were of optimal quality, considering the characteristics of the used solver, and they were compared with methods found in the specialized literature. / Doutor
|
2 |
Desenvolvimento de modelos e algoritmos sequenciais e paralelos para o planejamento da expansão de sistemas de transmissão de energia elétrica / Development of mathematical models, sequential and parallel algorithms for transmission expansion planningAldir Silva Sousa 16 March 2012 (has links)
O principal objetivo deste estudo é propor uma nova metodologia para lidar com o problema de Planejamento da Expansão de Redes de Transmissão de Energia Elétrica com Múltiplos Cenários de Geração (PERTEEG). Com a metodologia proposta neste trabalho almeja-se construir planos de expansão de redes de transmissão de energia elétrica que sejam capazes de, no menor custo de investimento possível, satisfazer às novas exigências dos sistemas elétricos modernos, tais como construção de redes de transmissão livres de congestionamento e robustas à incerteza em relação aos cenários de geração futuros. Através de estudos realizados na literatura do problema, verificou-se que novos modelos e metodologias de abordagem do PERTEEG se fazem necessários. Ao se modelar o PERTEEG visando construir redes de transmissão que contornem as incertezas em relação aos cenários de geração futuros e concomitantemente minimizar o custo de investimento para a expansão do sistema, o planejador se depara com um problema de otimização multiobjetivo. Existem na literatura da pesquisa operacional diversos algoritmos que visam lidar com problemas multiobjetivos. Nesta tese, foram aplicados dois desses algoritmos: Nondominated Sorting Genetic Algorithms-II (NSGA-II) e SPEA2: Strength Pareto Evolutionary Algorithm (SPEA2). Em primeira análise, se destacou uma das maiores dificuldade de lidar com o PERTEEG, a saber, o esforço computacional elevado. Por isso, vislumbrou-se que uma possível solução para contornar esta dificuldade esteja na computação paralela. Para se confirmar esta suspeita, nesta tese foram implementadas versões paralelas dos algoritmos sequenciais testados. A qualidade das soluções encontradas pelos algoritmos foram bastante superiores às soluções encontradas pelos algoritmos sequenciais. Neste trabalho também será mostrado que as soluções ótimas clássicas considerando somente o objetivo de m´mínimo custo são incapazes de atender às novas necessidades dos sistemas elétricos de potência. Testes computacionais foram realizados e analisados neste trabalho. Considerando as metodologias conhecidas na literatura para medição da qualidade das soluções encontradas por algoritmos multiobjetivo, se pode afirmar de que a proposta de abordagem do problema de PERTEEG pode ser viável tanto do ponto de vista de engenharia como do ponto de vista da computação matemática. / The main objective of this study is to propose a new methodology to deal with the long-term transmission system expansion planning with multiple generation dispatch scenarios problem (TEP-MDG). With the methodology proposed in this thesis we aim to build expansion plans with minimum investment cost and also capable of meeting the new demands of modern electrical systems, such as uncertainty about the future generation scenarios and congestion in the transmission systems. By modeling the TEP-MDG aiming to build transmission networks that circumvent the uncertainties regarding the future generation scenarios and simultaneously minimize the cost of investment for transmission networks expansion, the planner faces a multiobjective optimization problem. One can find various algorithms that aim to deal with multiobjective problems in the literature of operations research. In this thesis, we apply two of these algorithms: Nondominated Sorting Genetic Algorithms-II (NSGA-II) and SPEA2: Strength Pareto Evolutionary Algorithm (SPEA2). In a first analysis, we have found that the most critical issue with the TEP-MOG is the high computational demand. Therefore, in order to circumvent this difficulty we have implemented parallel versions of the sequential algorithms tested. In performed tests, the parallel algorithms have found solutions of superior quality than the solutions found by the sequential algorithms. In this thesis we also show that optimal solutions considering only the classical least cost objective are unable to meet the electric power systems new demands. Tests have been performed and analyzed in this work. By considering the methods known in the literature convinced to measure the quality of solutions found by multiobjective algorithms, we concluded that the proposed approach to TEP-MDG may be feasible from the point of view of both engineering and computational mathematics.
|
3 |
Desenvolvimento de modelos e algoritmos sequenciais e paralelos para o planejamento da expansão de sistemas de transmissão de energia elétrica / Development of mathematical models, sequential and parallel algorithms for transmission expansion planningSousa, Aldir Silva 16 March 2012 (has links)
O principal objetivo deste estudo é propor uma nova metodologia para lidar com o problema de Planejamento da Expansão de Redes de Transmissão de Energia Elétrica com Múltiplos Cenários de Geração (PERTEEG). Com a metodologia proposta neste trabalho almeja-se construir planos de expansão de redes de transmissão de energia elétrica que sejam capazes de, no menor custo de investimento possível, satisfazer às novas exigências dos sistemas elétricos modernos, tais como construção de redes de transmissão livres de congestionamento e robustas à incerteza em relação aos cenários de geração futuros. Através de estudos realizados na literatura do problema, verificou-se que novos modelos e metodologias de abordagem do PERTEEG se fazem necessários. Ao se modelar o PERTEEG visando construir redes de transmissão que contornem as incertezas em relação aos cenários de geração futuros e concomitantemente minimizar o custo de investimento para a expansão do sistema, o planejador se depara com um problema de otimização multiobjetivo. Existem na literatura da pesquisa operacional diversos algoritmos que visam lidar com problemas multiobjetivos. Nesta tese, foram aplicados dois desses algoritmos: Nondominated Sorting Genetic Algorithms-II (NSGA-II) e SPEA2: Strength Pareto Evolutionary Algorithm (SPEA2). Em primeira análise, se destacou uma das maiores dificuldade de lidar com o PERTEEG, a saber, o esforço computacional elevado. Por isso, vislumbrou-se que uma possível solução para contornar esta dificuldade esteja na computação paralela. Para se confirmar esta suspeita, nesta tese foram implementadas versões paralelas dos algoritmos sequenciais testados. A qualidade das soluções encontradas pelos algoritmos foram bastante superiores às soluções encontradas pelos algoritmos sequenciais. Neste trabalho também será mostrado que as soluções ótimas clássicas considerando somente o objetivo de m´mínimo custo são incapazes de atender às novas necessidades dos sistemas elétricos de potência. Testes computacionais foram realizados e analisados neste trabalho. Considerando as metodologias conhecidas na literatura para medição da qualidade das soluções encontradas por algoritmos multiobjetivo, se pode afirmar de que a proposta de abordagem do problema de PERTEEG pode ser viável tanto do ponto de vista de engenharia como do ponto de vista da computação matemática. / The main objective of this study is to propose a new methodology to deal with the long-term transmission system expansion planning with multiple generation dispatch scenarios problem (TEP-MDG). With the methodology proposed in this thesis we aim to build expansion plans with minimum investment cost and also capable of meeting the new demands of modern electrical systems, such as uncertainty about the future generation scenarios and congestion in the transmission systems. By modeling the TEP-MDG aiming to build transmission networks that circumvent the uncertainties regarding the future generation scenarios and simultaneously minimize the cost of investment for transmission networks expansion, the planner faces a multiobjective optimization problem. One can find various algorithms that aim to deal with multiobjective problems in the literature of operations research. In this thesis, we apply two of these algorithms: Nondominated Sorting Genetic Algorithms-II (NSGA-II) and SPEA2: Strength Pareto Evolutionary Algorithm (SPEA2). In a first analysis, we have found that the most critical issue with the TEP-MOG is the high computational demand. Therefore, in order to circumvent this difficulty we have implemented parallel versions of the sequential algorithms tested. In performed tests, the parallel algorithms have found solutions of superior quality than the solutions found by the sequential algorithms. In this thesis we also show that optimal solutions considering only the classical least cost objective are unable to meet the electric power systems new demands. Tests have been performed and analyzed in this work. By considering the methods known in the literature convinced to measure the quality of solutions found by multiobjective algorithms, we concluded that the proposed approach to TEP-MDG may be feasible from the point of view of both engineering and computational mathematics.
|
Page generated in 0.087 seconds