• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle de la protéine dystrophine Dp71 dans l'inflammation vasculaire rétinienne / Role of the Dp71 dystrophin protein in retinal vascular inflammation

El Mathari, Brahim 19 December 2014 (has links)
Dans la rétine, la protéine dystrophine Dp71 est principalement exprimée dans les cellules gliales de Müller (CGM), qui contribuent à la stabilisation de la barrière hémato-rétinienne (BHR). Les CGM sont aussi les principales sources de facteurs inflammatoires. Ainsi, nous avons étudié les effets de l’absence de Dp71 sur l’homéostasie potassique et aqueuse, ainsi que sur l’expression de médiateurs de l’inflammation et la perméabilité vasculaire rétinienne.L'absence de Dp71 diminue l'expression de la protéine AQP4 et induit la redistribution de Kir4.1 tout le long des CGM. Par ailleurs, nous avons également constaté que le décollement expérimental de la rétine chez les souris WT induit une diminution de Dp71 associée à une délocalisation de Kir4.1, une régulation à la baisse de la protéine AQP4 dans les CGM.Nos données montrent clairement que l'absence de la Dp71 entraîne une augmentation de l'expression du VEGF, d’ICAM-1, une augmentation du nombre de leucocytes adhérents rétiniens, une dégénérescence accrue des capillaires associée à une forte perméabilité vasculaire chez les souris Dp71-null.L’ensemble de nos résultats a mis en évidence le rôle de la Dp71 dans les mécanismes visant à réguler l'homéostasie rétinienne et à assurer la stabilisation de la BHR. Nous apportons la preuve que la perte de Dp71 favorise l'inflammation vasculaire rétinienne et la dégénérescence des capillaires associée à une perméabilité vasculaire. Ensemble, ces observations suggèrent que la souris Dp71-null serait un modèle approprié pour étudier les pathologies vasculaires rétiniennes telles que la rétinopathie diabétique, l’uvéite rétinienne et l’occlusion veineuse rétinienne. / In the retina, the Dp71 dystrophin protein is mainly expressed in Müller glial cells (MGC), which contribute to the stabilization of the blood-retinal barrier (BRB). MGC are also the main sources of inflammatory factors. Thus, in our thesis project we studied the effects of the absence of the Dp71 protein on potassium and water homeostasis, as well as the expression of inflammatory mediators and retinal vascular permeability.The absence of the Dp71 protein decreased the expression of AQP4 protein and induces the redistribution of Kir4.1, initially restricted to the end-feet of MGC and around vessels, all along the cell membrane. Moreover, we have also shown that the experimental retinal detachment in WT mice induces a reduction of Dp71 which is associated with Kir4.1 mislocation, a down regulation of AQP4 protein in MGC.Our data clearly demonstrate that the absence of the Dp71 leads to increased retinal VEGF and ICAM-1 expression in Dp71-null mouse compared to WT mouse strain. There is also an increase of the number of retinal adherent leukocytes, capillary degeneration associated with high BRB permeability observed in Dp71-null mice.Our findings highlight Dp71 as an important component in the mechanisms leading to the regulation of retinal homeostasis; and to the maintaining of the BRB stabilization. We provide evidence that deficiency of Dp71 promotes retinal vascular inflammation and significantly exacerbated degeneration of capillaries and BRB breakdown. Together these results suggest that the Dp71-null mouse could be a good model to study retinal vascular diseases such as diabetic retinopathy, retinal uveitis and retinal vein occlusion.
2

Regulation of dystrophin Dp71 during Müller glial cells edema in mouse retina / Régulation de la dystrophine Dp71 au cours de l'œdème des cellules gliales de Müller dans la rétine de souris

Siqueiros Márquez, Lourdes Montserrat 30 November 2017 (has links)
La rupture de la barrière hémato-rétinienne interne (iBRB) se produit dans de nombreux troubles de la rétine et peut provoquer un œdème rétinien souvent responsable de la perte de vision. Le but de cette étude était de caractériser l'impact d'une rupture de l’iBRB sur les changements homéostatiques rétiniens de la dystrophine Dp71, AQP4 et Kir4.1 provoqués par les altérations les cellules gliales de Müller CGM. L'effet protecteur de la Dex a été étudié dans ce modèle. Par ailleurs, les explants rétiniens ont été utilisé pour étudier la formation et la résolution de l'œdème de CGM sans l'influence de l'inflammation du cristallin ainsi que l’effet de différentes doses de glucocorticoïdes (Dex, triamcinolone et fluocinolone) et des inhibiteurs de la voie de l'acide arachidonique. Nous avons observé que la chirurgie partielle du cristallin induit une rupture de l'iBRB et des changements moléculaires dans le CGM, une diminution de l’expression de la Dp71 et d’AQP4 et la délocalisation de Kir4.1. La Dex semble protéger la rétine par l’augmentation de l’expression du HSF1. Nous avons également observé que même si les glucocorticoides étudié ont des effets différents sur l’expression de la Dp71, AQP4 et Kir4.1 les trois sont capables de prévenir la formation de l’œdème de CGM. Nos résultats suggèrent que la formations d'œdème semblent être régulée par la voie des leucotriènes. Nous avons étudié le rôle des isoformes de la dystrophine Dp71 dans les processus d'adhésion intercellulaire des cellules PC12. Nos résultats suggèrent l’existence d’au moins deux mécanismes différents seraient impliqués dans l'adhésion intercellulaire associée à la Dp71, l'une impliquant Dp71dΔ71 et Cx43. / The breakdown of the internal blood-retinal barrier (iBRB) occurs in many retinal disorders and may cause retinal edema, often responsible for vision loss. The aim of this study was to characterize the impact of iBRB disruption on retinal homeostatic changes in Dp71 dystrophin, AQP4 and Kir4.1 caused by Müller glial cells (MGC) alterations. The protective effect of Dex has been studied in this model. In addition, retinal explants were used to study the formation and resolution of CGM edema without the influence of lens inflammation and the effect of different doses of glucocorticoids (Dex, triamcinolone and fluocinolone) and inhibitors of the arachidonic acid pathway. We observed that partial lens surgery induced iBRB breakdown and molecular changes in MGC, decreased expression of Dp71 and AQP4, and miss localization of Kir4.1. Dex seems to protect the retina by increasing the expression of HSF1. We also observed that although the glucocorticoids studied have different effects on the expression of Dp71, AQP4 and Kir4.1 all three can prevent the formation of MGC edema. Our results suggest that edema formation appears to be regulated by leukotrienes. We have studied the role of isoforms of dystrophin Dp71 in intercellular adhesion processes of PC12 cells. Our results suggest the existence of at least two different mechanisms involved in intercellular adhesion associated with Dp71, one involving Dp71dΔ71 and Cx43.
3

La réponse des cellules gliales de Müller à l'amyloïde-β et au stress oxydant dans la dégénérescence rétinienne / Retinal Müller glial cells reponse to amyloide-b and oxidative stress in retinal degeneration

Chalour, Naïma 16 February 2012 (has links)
La dégénérescence maculaire liée à l’âge ou DMLA est une pathologie oculaire qui touche près d’un million de personnes en France, et représente la première cause de cécité légale dans les pays industrialisés. C’est une affection multifactorielle (environnement, génétique), dans laquelle les stress inflammatoires, métaboliques et oxydants interviennent et aboutissent à la mort des photorécepteurs. L’apparition des drusen (dépôts de matériel extracellulaire contenant de l’amyloïde-β (Aβ)), entre les cellules de l’épithélium pigmentaire de la rétine (EPR) et la membrane de Brush, représente un facteur de risque de développement de la DMLA. De plus, le 4-hydroxynonenal (4-HNE) est un marqueur de stress oxydant dans la rétine de patients de différentes pathologies dégénératives comme la DLMA. L’identification des mécanismes moléculaires et cellulaires impliqués dans les dégénérescences rétiniennes la pathogenèse de la DMLA constitue un enjeu de santé publique, puisqu’elle permettrait de développer de nouvelles stratégies thérapeutiques anti-dégénératives.Le but de mon travail de thèse a été dans un premier temps de mieux comprendre le rôle de l’Aβ dans la dégénérescence rétinienne.Nous avons montré que l’Aβ induit une activation rapide des cellules microgliales, une gliose soutenue des cellules gliales de Müller (CGM), un œdème dans la rétine interne et une apoptose des photorécepteurs. La dégénérescence des photorécepteurs est en corrélation avec une activation soutenue de PERK, impliquée dans la voie pro-apoptotique de la réponse UPR. Par ailleurs la gliose des CGM est caractérisé par une délocalisation des canaux Kir4.1, une diminution de l’expression d’AQP4 et de la glutamine synthetase (GS), et une augmentation de l’expression des canaux Kir2.1 et du transporteur GLAST1, suggérant une dérégulation de l’homéostasie rétinienne contrôlée par ces protéines. Nous avons montré que l’inhibition de la réponse inflammatoire, par l’utilisation de l’indomethacine, un inhibiteur non stéroïdien de de la cyclooxygénase (COX) 2, réverse l’effet de l’Aβ sur l’expression des canaux Kir4.1 et sur GLAST1 mais pas celle de la GS et d’AQP4, suggérant un couplage partiel entre la gliose et la réponse inflammatoire dans notre modèle d’injection sous-rétinienne d’Aβ.Dans un deuxième temps, nous nous sommes intéressés au rôle du 4-HNE dans les CGM, un produit de peroxydation lipidique, qui est produit dans la rétine sous l’effet de l’Aβ. Nous avons observé qu’un stress oxydant unique et létal induit par le 4-HNE, entraîne la mort des CGM par apoptose dépendante de l’activation des caspases. L’utilisation d’antioxydants impliqués dans la régénération du glutathion (GSH), protège contre la mort des CGM. L’analyse du transcriptome des CGM soumises au 4-HNE a permis de mettre en évidence une réponse transcriptionnelle adaptative des CGM : une activation de la défense anti-oxydante, de la réponse UPR (unfolded protein response) au stress du réticulum endoplasmique, et un phénotype anti-inflammatoire. Par ailleurs, la surexpression de l’APP (amyloid protein precursor), dont l’expression du transcrit est augmentée sous l’effet du stress oxydant dans les CGM, protège ces cellules contre la mort induite par le 4-HNE. Cette protection est associée à une augmentation des capacités anti-oxydantes et à une activation de la voie de survie de la réponse UPR. L’ensemble de nos résultats montre un rôle de l’Aβ dans la dégénérescence des photorécepteurs et indique que le métabolisme de l’APP, ainsi que les voies de survie et pro-apoptotique de la réponse UPR pourraient constituer des cibles thérapeutiques contre la dégénérescence rétinienne induite par l’Aβ ou les stress oxydants. / Age related macular degeneration (AMD) is a leading cause of blindness in western countries and affects one million people in France. Multiple risk factors (genetics, environment) are involved in the pathogenesis of AMD. In addition, the AMD pathogenesis is strongly associated with chronic oxidative stress and inflammation that ultimately lead to photoreceptor death. AMD is characterized by the formation of drusen, extracellular deposits, including amyloid-β (Aβ), between the retinal pigmented epithelium and Bruch’s membrane. Moreover, 4-hydroxynonenal (4-HNE) is an oxidative stress marker of different retinal diseases including AMD. The determination of molecular and cell mechanisms involved in retinal degeneration and the pathogenesis of AMD is required in order to develop new therapeutic anti-degenerative approaches. The aim of our study was first to investigate the role of Aβ in retinal degeneration. We demonstrated that subretinal injection of Aβ induces an early activation of microglial cells, a sustained retinal Müller glial (RMG) cells gliosis, an oedema in the internal part of retina and photoreceptors apoptosis. The photoreceptors apoptosis was correlated with a sustained activation of PERK, a kinase implicated in the pro-apoptotic pathway of UPR (unfolded protein response). In addition, RMG gliosis has been characterized by a Kir4.1 channel redistribution, a down-regulation of AQP4 and glutamine synthetase (GS) expression, and an up-regulation of Kir2.1 channel and GLAST1 transporter expression, suggesting a dysregulation of the retinal homeostasis which is controlled by these proteins. The inhibition of the inflammatory response using indomethacin, a non-steroidal and non-specific cyclooxygenase (COX) 2 inhibitor, reversed Aβ-induced Kir4.1 channel redistribution and GLAST1 up-regulation but not GS and AQP4 down-regulation, suggesting a partial coupling between gliosis and inflammatory response in retinal degeneration after subretinal injection of Aβ in mice. The second part of our study aimed to investigate the effects on RMG cells of 4-HNE, a lipid peroxidation product that is up-regulated in retina after Aβ injection. We have shown that a single lethal oxidative stress using 4-HNE induces RMG cells apoptosis associated with caspase 3 and caspase 9 activation. Pre-treatment of RMG cells with anti-oxidative molecules involved in glutathione regeneration restored cell viability. Transcriptome analysis of RMG cells treated with 4-HNE showed an adaptive transcriptional response consisting in an activation of anti-oxidative stress cell defense, activation of UPR in response to endoplasmic reticulum stress and anti-inflammatory phenotype. APP (amyloid protein precursor) overexpression, which the transcript is up-regulated in RMG cells under oxidative stress, protects from 4-HNE-induced cell death. This protection is associated with an up-regulation of anti-oxidative cell defense and an activation of the pro-survival pathway of UPR. Our study pinpoints the role of Aβ in photoreceptors degeneration and suggests that targeting APP metabolism, pro and anti-apoptotic pathways of the UPR response may hel develop selective methods against retinal degeneration implicating Aβ and oxidative stress.
4

Etude de la signalisation Hippo/YAP dans les cellules gliales de Müller en conditions physiologiques et pathologiques de dégénérescence rétinienne chez la souris / Study of Hippo/YAP signaling in Müller glial cells under physiological or pathological degenerative conditions in the mouse retina

Hamon, Annaïg 19 December 2017 (has links)
Les maladies dégénératives de la rétine sont une des causes principales de cécité. Parmi différentes stratégies thérapeutiques actuellement étudiées, notre équipe s’intéresse au potentiel régénératif de la rétine. Une source cellulaire d'intérêt sont les cellules de Müller, principal type de cellules gliales de la rétine, capables de se réactiver en cas de dégénérescence et d’adopter certaines caractéristiques de cellules souches. Elles entrent alors dans un état appelé gliose réactive. Tandis que chez certaines espèces comme le poisson, elles permettent la régénération de la rétine, elles ont des capacités régénératives très limitées et inefficaces chez les mammifères. Une meilleure connaissance des mécanismes moléculaires régissant la gliose réactive des cellules de Müller est donc essentielle si l’on veut identifier des cibles thérapeutiques capables de stimuler le potentiel de régénération de ces cellules. Dans ce contexte, le but de mon projet de thèse a été d’étudier le rôle du co-facteur de transcription YAP dans la réactivation des cellules de Müller. Cette protéine est l’effecteur de la voie de signalisation Hippo, connue pour son implication dans la régulation des cellules souches et la régénération de certains organes.Dans un premier temps, nous avons réalisé une analyse transcriptomique qui a montré que la voie Hippo/YAP est une des principales voies dérégulées dans un modèle de dégénérescence rétinienne chez la souris. Nous avons ensuite montré que la protéine YAP est spécifiquement exprimée dans les cellules de Müller et que son expression et son activité transcriptionnelle sont augmentées au cours de la dégénérescence lorsque les cellules de Müller deviennent réactives. Ces données suggèrent pour la première fois un lien entre YAP et la gliose réactive dans la rétine. Par conséquent, dans un second temps, mon projet de thèse a consisté en l’étude fonctionnelle de YAP dans les cellules de Müller. Dans ce but, nous avons généré par croisements chez la souris un modèle inductible de délétion du gène Yap spécifiquement dans ces cellules. Ce modèle a permis de montrer qu’en absence de Yap en conditions physiologiques, plusieurs gènes spécifiques des cellules de Müller sont dérégulés, suggérant un dysfonctionnement de ces cellules. L’étude phénotypique a permis de révéler que ces dérégulations moléculaires conduisent à un vieillissement prématuré des cellules de Müller et à une baisse de la vision chez les souris âgées. Ces données suggèrent que YAP est requis pour le fonctionnement normal des cellules gliales de Müller. Nous avons ensuite examiné l’impact de la perte de Yap dans les cellules de Müller en conditions de dégénérescence des photorécepteurs. Une analyse transcriptomique a permis de montrer que différents aspects de la réponse moléculaire des cellules de Müller réactives sont affectés. Parmi les processus biologiques dérégulés, nous nous sommes intéressés à la régulation de la prolifération cellulaire. Nous avons montré que YAP est nécessaire à l’augmentation de l’expression de gènes associés à la réentrée dans le cycle cellulaire de la glie de Müller. Par ailleurs, nos résultats suggèrent que des composants de la voie de signalisation EGFR, connue pour son rôle central dans la réactivation des cellules de Müller, sont régulés par YAP.Dans l’ensemble, ces résultats révèlent l’importance de YAP (i) dans le fonctionnement des cellules de Müller en conditions physiologiques pour maintenir l’homéostasie rétinienne, et (ii) dans la régulation des processus de réactivation de ces cellules en conditions dégénératives. De plus, ces données permettent de proposer un modèle selon lequel YAP serait impliqué dans le contrôle de la réentrée des cellules de Müller dans le cycle cellulaire via une interaction avec la voie de signalisation EGFR. Ce travail a donc contribué à approfondir nos connaissances du réseau de signalisation impliqué dans la réactivation des cellules de Müller de la rétine des mammifères. / Retinal dystrophies are one of the main causes of blindness. Among the different therapeutic strategies currently studied, our team is interested in the regenerative potential of endogenous retinal cells. A cellular source of interest are Müller cells, which are the main type of glial cells in the retina. These cells are able to reactivate in case of retinal degeneration and adopt various characteristics of stem cells. They enter a state called reactive gliosis. While in some species such as the fish, they allow the complete regeneration of the retina, they have very limited and ineffective regenerative capacities in mammals. Increasing our knowledge of the complex molecular response of Müller cells to retinal degeneration is thus essential for the development of promising new therapeutic strategies. In this context, the aim of my thesis project was to study the role of the co-transcription factor YAP in Müller cells reactivation. This protein is the main effector of the Hippo signaling pathway which is a crucial player in the field of stem cell biology and regeneration.As a first step, we performed a transcriptomic analysis, which revealed that the Hippo/YAP pathway is one of the main signaling deregulated in a mouse model of photoreceptor degeneration. In particular, we found that YAP is specifically expressed in Müller cells and strongly upregulated upon retinal degeneration, when these cells are reactivated. We thus uncovered for the first time a link between the Hippo/YAP pathway and reactive gliosis in the retina. Consequently, the second part of my thesis project was to undertake a functional study of YAP in Müller cells. For this purpose, we generated, by crossing, a mouse model allowing for Yap conditional knockout specifically in these cells. This model allowed us to show that Yap deletion leads to deregulation of several Müller cell specific genes. A phenotypic analysis revealed that these molecular deregulations lead to premature aging of Müller cells and visual defects in old mice. These results suggest that YAP is required for normal function of Müller glial cells. We then studied the impact of Yap deletion in Müller cells under degenerative conditions. A transcriptomic analysis revealed that various aspects of the molecular response of reactive Müller cells are affected in the absence of Yap. Among the deregulated biological processes, we focussed in particular in the regulation of cell proliferation. We found that YAP is required to trigger cell cycle gene upregulation that occurs in Müller glial cells following photoreceptor cell death. Furthermore, our results suggest that some components of the EGFR signaling pathway, which is known for its central role in the reactivation of Müller cells in pathological conditions, are regulated by YAP in Müller cells.Taken together, these results highlight the importance of YAP (i) in Müller cell function under physiological conditions to maintain retinal homeostasis, and (ii) in the regulation of Müller cell reactivation process under degenerative conditions. Moreover, these data allow us to propose a model in which YAP would be involved in the control of Müller glia cell cycle re-entry through its interaction with the EGFR signaling pathway. Therefore, this work has contributed to increase our knowledge of the signaling network involved in the reactivation of Müller cells in the mammalian retina.

Page generated in 0.08 seconds