• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Facial Emotion Recognition using Convolutional Neural Network with Multiclass Classification and Bayesian Optimization for Hyper Parameter Tuning.

Bejjagam, Lokesh, Chakradhara, Reshmi January 2022 (has links)
The thesis aims to develop a deep learning model for facial emotion recognition using Convolutional Neural Network algorithm and Multiclass Classification along with Hyper-parameter tuning using Bayesian Optimization to improve the performance of the model. The developed model recognizes seven basic emotions in images of human beings such as fear, happy, surprise, sad, neutral, disgust and angry using FER-2013 dataset.
2

Разработка информационной платформы обмена данными для управления трансфером технологий : магистерская диссертация / Development of information platform for data exchange for managing technology transfer

Кочетов, Р. В., Kochetov, R. V. January 2023 (has links)
Объектом исследования являются методы машинного обучения, позволяющие фильтровать данные, и методы разработки информационных платформ. Фильтрация данных подобного типа применяется в такой области, как поисковые системы, чтобы на основе запроса выдать пользователю релевантные результаты. Предмет исследования – разработка модели машинного обучения, фильтрующей текстовые данные, и информационной платформы для отображения отфильтрованных данных. Особенностями исследования являются открытая реализация полного проекта, то есть она доступна каждому, и возможность его модификации. Для обучения модели был использован самостоятельно составленный набор научных работ, информационная платформа была разработана с нуля. Итоговая модель LSTM, выбранная методом сравнения метрик, показала результат предсказания соответствия целевой тематике в 90%, что позволяет говорить о ее возможном внедрении в соответствующие Интернет-ресурсы, так как они гарантированно уменьшат объем научных работ, проверяемых вручную. / The object of the research is machine learning methods that allow filtering text data obtained from the information platform. Filtering of this type of data is used in such an area as search engines to give relevant results to the user based on a query. Within the framework of this dissertation, it was proposed to apply machine learning methods to filter a set of scientific papers based on their title and target label in the form of the subject of the work. The features of the study are the open implementation of the full project, that is, it is available to everyone, and the possibility of its modification. A self-compiled set of scientific papers was used to train the model, the information platform was developed from scratch. The final LSTM model, chosen by the method of comparing metrics, showed the result of predicting compliance with the target topic in 95%, which allows us to talk about its possible implementation in the relevant Internet resources, since they are guaranteed to reduce the volume of scientific papers checked manually.
3

Separating Tweets from Croaks : Detecting Automated Twitter Accounts with Supervised Learning and Synthetically Constructed Training Data / : Automationsdetektion av Twitter-konton med övervakad inlärning och syntetiskt konstruerad träningsmängd

Teljstedt, Erik Christopher January 2016 (has links)
In this thesis, we have studied the problem of detecting automated Twitter accounts related to the Ukraine conflict using supervised learning. A striking problem with the collected data set is that it was initially lacking a ground truth. Traditionally, supervised learning approaches rely on manual annotation of training sets, but it incurs tedious work and becomes expensive for large and constantly changing collections. We present a novel approach to synthetically generate large amounts of labeled Twitter accounts for detection of automation using a rule-based classifier. It significantly reduces the effort and resources needed and speeds up the process of adapting classifiers to changes in the Twitter-domain. The classifiers were evaluated on a manually annotated test set of 1,000 Twitter accounts. The results show that rule-based classifier by itself achieves a precision of 94.6% and a recall of 52.9%. Furthermore, the results showed that classifiers based on supervised learning could learn from the synthetically generated labels. At best, the these machine learning based classifiers achieved a slightly lower precision of 94.1% compared to the rule-based classifier, but at a significantly better recall of 93.9% / Detta exjobb har undersökt problemet att detektera automatiserade Twitter-konton relaterade till Ukraina-konflikten genom att använda övervakade maskininlärningsmetoder. Ett slående problem med den insamlade datamängden var avsaknaden av träningsexempel. I övervakad maskininlärning brukar man traditionellt manuellt märka upp en träningsmängd. Detta medför dock långtråkigt arbete samt att det blir dyrt förstora och ständigt föränderliga datamängder. Vi presenterar en ny metod för att syntetiskt generera uppmärkt Twitter-data (klassifieringsetiketter) för detektering av automatiserade konton med en regel-baseradeklassificerare. Metoden medför en signifikant minskning av resurser och anstränging samt snabbar upp processen att anpassa klassificerare till förändringar i Twitter-domänen. En utvärdering av klassificerare utfördes på en manuellt uppmärkt testmängd bestående av 1,000 Twitter-konton. Resultaten visar att den regelbaserade klassificeraren på egen hand uppnår en precision på 94.6% och en recall på 52.9%. Vidare påvisar resultaten att klassificerare baserat på övervakad maskininlärning kunde lära sig från syntetiskt uppmärkt data. I bästa fall uppnår dessa maskininlärningsbaserade klassificerare en något lägre precision på 94.1%, jämfört med den regelbaserade klassificeraren, men med en betydligt bättre recall på 93.9%.

Page generated in 0.0267 seconds