• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teaching robots social autonomy from in situ human supervision

Senft, Emmanuel January 2018 (has links)
Traditionally the behaviour of social robots has been programmed. However, increasingly there has been a focus on letting robots learn their behaviour to some extent from example or through trial and error. This on the one hand excludes the need for programming, but also allows the robot to adapt to circumstances not foreseen at the time of programming. One such occasion is when the user wants to tailor or fully specify the robot's behaviour. The engineer often has limited knowledge of what the user wants or what the deployment circumstances specifically require. Instead, the user does know what is expected from the robot and consequently, the social robot should be equipped with a mechanism to learn from its user. This work explores how a social robot can learn to interact meaningfully with people in an efficient and safe way by learning from supervision by a human teacher in control of the robot's behaviour. To this end we propose a new machine learning framework called Supervised Progressively Autonomous Robot Competencies (SPARC). SPARC enables non-technical users to control and teach a robot, and we evaluate its effectiveness in Human-Robot Interaction (HRI). The core idea is that the user initially remotely operates the robot, while an algorithm associates actions to states and gradually learns. Over time, the robot takes over the control from the user while still giving the user oversight of the robot's behaviour by ensuring that every action executed by the robot has been actively or passively approved by the user. This is particularly important in HRI, as interacting with people, and especially vulnerable users, is a complex and multidimensional problem, and any errors by the robot may have negative consequences for the people involved in the interaction. Through the development and evaluation of SPARC, this work contributes to both HRI and Interactive Machine Learning, especially on how autonomous agents, such as social robots, can learn from people and how this specific teacher-robot interaction impacts the learning process. We showed that a supervised robot learning from their user can reduce the workload of this person, and that providing the user with the opportunity to control the robot's behaviour substantially improves the teaching process. Finally, this work also demonstrated that a robot supervised by a user could learn rich social behaviours in the real world, in a large multidimensional and multimodal sensitive environment, as a robot learned quickly (25 interactions of 4 sessions during in average 1.9 minutes) to tutor children in an educational game, achieving similar behaviours and educational outcomes compared to a robot fully controlled by the user, both providing 10 to 30% improvement in game metrics compared to a passive robot.
2

Living in a dynamic world : semantic segmentation of large scale 3D environments

Miksik, Ondrej January 2017 (has links)
As we navigate the world, for example when driving a car from our home to the work place, we continuously perceive the 3D structure of our surroundings and intuitively recognise the objects we see. Such capabilities help us in our everyday lives and enable free and accurate movement even in completely unfamiliar places. We largely take these abilities for granted, but for robots, the task of understanding large outdoor scenes remains extremely challenging. In this thesis, I develop novel algorithms for (near) real-time dense 3D reconstruction and semantic segmentation of large-scale outdoor scenes from passive cameras. Motivated by "smart glasses" for partially sighted users, I show how such modeling can be integrated into an interactive augmented reality system which puts the user in the loop and allows her to physically interact with the world to learn personalized semantically segmented dense 3D models. In the next part, I show how sparse but very accurate 3D measurements can be incorporated directly into the dense depth estimation process and propose a probabilistic model for incremental dense scene reconstruction. To relax the assumption of a stereo camera, I address dense 3D reconstruction in its monocular form and show how the local model can be improved by joint optimization over depth and pose. The world around us is not stationary. However, reconstructing dynamically moving and potentially non-rigidly deforming texture-less objects typically require "contour correspondences" for shape-from-silhouettes. Hence, I propose a video segmentation model which encodes a single object instance as a closed curve, maintains correspondences across time and provide very accurate segmentation close to object boundaries. Finally, instead of evaluating the performance in an isolated setup (IoU scores) which does not measure the impact on decision-making, I show how semantic 3D reconstruction can be incorporated into standard Deep Q-learning to improve decision-making of agents navigating complex 3D environments.
3

Teaching mobile robots to use spatial words

Dobnik, Simon January 2009 (has links)
The meaning of spatial words can only be evaluated by establishing a reference to the properties of the environment in which the word is used. For example, in order to evaluate what is to the left of something or how fast is fast in a given context, we need to evaluate properties such as the position of objects in the scene, their typical function and behaviour, the size of the scene and the perspective from which the scene is viewed. Rather than encoding the semantic rules that define spatial expressions by hand, we developed a system where such rules are learned from descriptions produced by human commentators and information that a mobile robot has about itself and its environment. We concentrate on two scenarios and words that are used in them. In the first scenario, the robot is moving in an enclosed space and the descriptions refer to its motion ('You're going forward slowly' and 'Now you're turning right'). In the second scenario, the robot is static in an enclosed space which contains real-size objects such as desks, chairs and walls. Here we are primarily interested in prepositional phrases that describe relationships between objects ('The chair is to the left of you' and 'The table is further away than the chair'). The perspective can be varied by changing the location of the robot. Following the learning stage, which is performed offline, the system is able to use this domain specific knowledge to generate new descriptions in new environments or to 'understand' these expressions by providing feedback to the user, either linguistically or by performing motion actions. If a robot can be taught to 'understand' and use such expressions in a manner that would seem natural to a human observer, then we can be reasonably sure that we have captured at least something important about their semantics. Two kinds of evaluation were performed. First, the performance of machine learning classifiers was evaluated on independent test sets using 10-fold cross-validation. A comparison of classifier performance (in regard to their accuracy, the Kappa coefficient (κ), ROC and Precision-Recall graphs) is made between (a) the machine learning algorithms used to build them, (b) conditions under which the learning datasets were created and (c) the method by which data was structured into examples or instances for learning. Second, with some additional knowledge required to build a simple dialogue interface, the classifiers were tested live against human evaluators in a new environment. The results show that the system is able to learn semantics of spatial expressions from low level robotic data. For example, a group of human evaluators judged that the live system generated a correct description of motion in 93.47% of cases (the figure is averaged over four categories) and that it generated the correct description of object relation in 59.28% of cases.
4

Система управления мобильным роботом на основе внешнего видеонаблюдения с применением алгоритмов машинного обучения : магистерская диссертация / Mobile robot control system based on external video surveillance using machine learning algorithms

Литаврин, Я. И., Litavrin, Ya. I. January 2024 (has links)
Разработка прототипа системы управления мобильным роботом на основе внешнего видеонаблюдения с применением методов машинного обучения. / Development of a prototype of a mobile robot control system based on external video surveillance using machine learning methods.

Page generated in 0.0294 seconds