• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of novel polymer matrices for MALDI MS and MALDI MS Imaging

Horatz, Kilian 01 December 2021 (has links)
Matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) and the corresponding visualization technique MALDI MS Imaging (MSI) have emerged as important analytical tools in biochemical sciences, e.g., for drug development or to trace the metabolomic changes in cancerous tissues. Initially developed for the detection of high molecular weight compounds (HMWC; M > 1000 Da), in recent years the reliable and reproducible detection of low molecular weight compounds (LMWC; M < 1000 Da) has gained high attention, e.g., in the research fields of metabolomics and lipidomics. By using a protective matrix, the MALDI technique is capable of soft ionization of analytes to prevent their fragmentation or degradation. This matrix is responsible for the spatial separation of the analyte molecules, their protection from the strong laser shots, and their ionization. Commonly used matrices are small organic matrices (SOMs; M < 500 Da), which are utilized in HMWC analytics and recently also in LMWC analytics since they show sufficient absorption of the laser radiation, high crystallinity, and good ionization efficiency. However, their utilization can cause several drawbacks: (i) High background interferences below m/z = 1000 (not MALDI silent), which is disadvantageous specifically for LMWC analytics; (ii) low vacuum stability, which is especially problematic for standard instruments operated under high vacuum (HV); (iii) challenging homogeneous thin-layer coating, potentially causing inconsistent measurement conditions; and (iv) usually no suitability for dual polarity mode experiments, i.e., carrying out positive and negative mode measurements with the same matrix. Polymeric materials are promising candidates for MALDI silent matrices, as the large variety of possible molecular layouts potentially allows to meet all prerequisites of a MALDI matrix: (a) Sufficient ultra-violet (UV) laser radiation absorption, implemented by introducing conjugated π-electron systems in the polymer backbone or side chains; (b) high ionization efficiency, enhanced by adding acidic and/or basic functional groups to the polymer’s molecular structure, potentially also allowing dual polarity mode measurements; (c) MALDI silence, enabled by the high molar mass of the polymer chains; (d) high vacuum stability, also granted by the polymer’s molar mass; and (e) homogeneous thin-films, achieved by multiple available coating methods. Yet, despite their high potential only a handful of polymeric matrices were reported in literature and so far, investigations to develop conscious design strategies are missing. The target of this thesis is to contribute to the field of MALDI silent matrices by developing and investigating different polymers as macromolecular MALDI MS and MSI matrices for LMWC analytics. Therefore, two different strategies were explored: (i) Investigating conjugated polymers, and (ii) polymerizing SOMs. For the first strategy, five conjugated polymers were tested as MALDI matrices for the detection of various LMWCs. Among these, four were found to be excellent matrices, with sufficient ionization efficiencies and rare dual polarity mode suitability and allowed LMWC detection with low background interferences (MALDI silent). A high crystallinity of the matrix (SOM) is reported to be crucial to ensure successful measurements, yet conjugated polymer matrices (CPMs) are semi-crystalline, i.e., they contain crystalline and amorphous domains. Hence, the analytes are expected to be incorporated in the crystalline domains of the CPMs, depending on their degree of crystallization. Therefore, two amorphous CPMs were synthesized and tested, showing similar matrix performances (e.g., ionization efficiencies, dual polarity mode, MALDI silence) as a structurally related semi-crystalline CPM. This indicates that the analytes are incorporated in the amorphous parts of the CPM. The second strategy towards polymeric matrices (PMs) is the polymerization of standard SOMs. As the matrix performance of the corresponding SOMs is known, the performance of the respective polymerized SOMs (P(SOMs)) can be validated against this benchmark. At the same time, polymerization can induce the properties needed to enable efficient LMWC analytics. Therefore, two standard SOMs were modified and polymerized, resulting in P(SOMs), which were vacuum stable and MALDI silent, and showed similar optical properties, analyte scopes and ionization efficiencies in benchmark tests with their respective SOMs. For the fast and facile comparison of the matrix performances of PMs and standard matrices, the graphing software OriginPro was used to visualize, process, and evaluate the acquired mass spectra. To automatize these tasks, a script was programmed using the OriginPro-native programming languages LabTalk and OriginC: X Functions.
2

Analysis of Lipids in Kidney Tissue Using High Resolution MALDI Mass Spectrometry Imaging

Aboulmagd Khodier, Sarah 25 September 2018 (has links)
Massenspektrometrisches Imaging (MSI) ist unverzichtbar für die Untersuchung der räumlichen Verteilung von Molekülen in einer Vielzahl von biologischen Proben. Seit seiner Einführung hat sich MALDI zu einer dominierenden Bildgebungsmethode entwickelt, die sich als nützlich erwiesen hat, um die Komplexität von Lipidstrukturen in biologischen Geweben zu bestimmen. Einerseits ist die Rolle von Cisplatin bei der Behandlung von menschlichen malignen Erkrankungen gut etabliert, jedoch ist Nephrotoxizität eine limitierende Nebenwirkung, die Veränderungen des renalen Lipidprofils beinhaltet. Dies führte zu der Motivation, die Lipidzusammensetzung des Nierengewebes in mit Cisplatin behandelten Ratten zu untersuchen, um die involvierten Lipid-Signalwege aufzuklären. Es wurde eine Methode zur Kartierung der Lipidzusammensetzung in Nierenschnitten unter Verwendung von MALDI MSI entwickelt. Die Verteilung von Nierenlipiden in Cisplatin-behandelten Proben zeigte deutliche Unterschiede in Bezug auf die Kontrollgruppen. Darüber hinaus wurde die Beurteilung der Ionenbilder von Lipiden in Cisplatin-behandelten Nieren meist als qualitative Aspekte betrachtet. Relative quantitative Vergleiche wurden durch den variablen Einfluss von experimentellen und instrumentellen Bedingungen begrenzt. Daher bestand die Notwendigkeit, ein Normalisierungsverfahren zu entwickeln, das einen Vergleich der Lipidintensität verschiedener Proben ermöglicht. Das Verfahren verwendete einen Tintenstrahldrucker, um eine Mischung der MALDI-Matrix und der internen internen Lipid-Metall-Standards aufzubringen. Unter Verwendung von ICP-MS erlaubte der interne Metallstandard, die Konsistenz der Matrix und der internen Standards zu bestätigen. Die Anwendung der Methode zur Normalisierung von Ionenintensitäten von Nierenlipiden zeigte eine ausgezeichnete Bildkorrektur und ermöglichte einen relativen quantitativen Vergleich von Lipidbildern in Cisplatin-behandelten Proben. / Mass spectrometry imaging is indispensable for studying the spatial distribution of molecules within a diverse range of biological samples. Since its introduction, MALDI has become a dominant imaging method, which proved useful to sort out the complexity of lipid structures in biological tissues. The role of cisplatin in the treatment of human malignancies is well-established. However, nephrotoxicity is a limiting side effect that involves an acute injury of the proximal tubule and alterations in the renal lipid profile. This evolved the motivation to study the spatial distribution of lipids in the kidney tissue of cisplatin-treated rats to shed light on the lipid signaling pathways involved. A method for mapping of lipid distributions in kidney sections using MALDI-LTQ-Orbitrap was developed, utilizing the high performance of orbitrap detection. The distribution of kidney lipids in cisplatin-treated samples revealed clear differences with respect to control group, which could be correlated to the proximal tubule injury. The findings highlight the usefulness of MALDI MSI as complementary tool for clinical diagnostics. Furthermore, assessment of the ion images of lipids in cisplatin-treated kidney mostly considered qualitative aspects. Relative quantitative comparisons were limited by the variable influence of experimental and instrumental conditions. Hence, the necessity developed to establish a normalization method allowing comparison of lipid intensity in MALDI imaging measurements of different samples. The method employed an inkjet printer to apply a mixture of the MALDI matrix and dual lipid-metal internal standards. Using ICP-MS, the metal internal standard allowed to confirm the consistency of the matrix and internal standards application. Applying the method to normalize ion intensities of kidney lipids demonstrated excellent image correction and successfully enabled relative quantitative comparison of lipid images in control and cisplatin-treated samples.

Page generated in 0.0298 seconds