• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse protéomique différentielle des cellules endothéliales de la barrière hémato-encéphalique : identification de protéines induites par les cellules gliales / Differential proteomic analysis of blood-brain barrier endothelial cells : identification of glial cells-induced proteins

Deracinois, Barbara 19 December 2012 (has links)
En contrôlant le passage para- et transcellulaire des composés du sang vers le cerveau (et inversement), la barrière hémato-encéphalique (BHE) constitue la « gardienne » du compartiment cérébral. Bien que relativement connu dans son aspect physiologique, le phénotype BHE des cellules endothéliales des capillaires cérébraux (BCECs) reste mal compris au regard des mécanismes moléculaires qui gouvernent son établissement et son maintien. Dans cette optique, à l’aide du modèle in vitro de BHE développé au laboratoire (co-culture de BCECs bovines et de cellules gliales de rats), nous avons réalisé deux études protéomiques comparatives afin d’identifier les protéines cytoplasmiques potentiellement impliquées dans l’induction et le maintien de ce phénotype: d’une part une approche qualitative sans marquage (label free) et d’autre part une approche quantitative grâce à un marquage isotopique préalable des protéines (isotope-coded protein label, ICPL). Les deux approches, label free et ICPL se sont révélées complémentaires et ont permis, respectivement, l’identification de 447 et de 412 protéines (dont 290 quantifiées). Quatre protéines d’un intérêt particulier dans le domaine de la BHE (phosphatase alcaline tissu-non spécifique, TNAP ; protéine 1 possédant un domaine d’homologie à Eps15, EHD1 ; superoxyde dismutase, SODC et homologue 7 de la protéine de la maladie de Parkinson PARK7, DJ-1) ont fait l’objet de caractérisations biochimiques approfondies et ouvrent des pistes d’investigation sur des potentielles voies cellulaires induites par les cellules gliales et impliquées dans le phénotype BHE. / The blood-brain barrier (BBB) controls the para- and transcellular crossing of compounds from blood to brain (and inversely) and establishes the “gatekeepers” of the brain. The major part of therapeutic drugs developed to fight the brain diseases is deemed inefficient in vivo due to the presence of the BBB that they are unable to cross. Although relatively well known in its physiological aspect, the BBB phenotype of brain capillary endothelial cells (BCECs) remains largely under known and misunderstood in regards of the molecular mechanisms that govern its establishment and its maintenance. To this goal, using the in vitro BBB model developed in the laboratory (co-culture of bovine BCECs with rat glial cells), we performed two differential proteomic studies to identify the main cytoplasmic proteins involved in the establishment and maintenance of this phenotype: a qualitative label free approach and a quantitative isotope-coded protein labeling (ICPL) approach.The two different approaches, label free and ICPL, are complementary and led to the identification of 447 and 412 proteins, respectively. Four proteins of particular interest for BBB (tissue-non specific alkaline phosphatase, TNAP; Eps15 homology domain containing protein 1, EHD1; superoxide dismutase, SODC and Parkinson disease protein 7 homolog PARK7, DJ-1) have been more deeply studied and they open new discovery prospects related to cellular pathways induced by glial cells and involved in the BBB phenotype.
2

Investigating Stability and Tablet Manufacturing of Cannabidiol

Alsbach, Branden Tyler 15 June 2023 (has links)
No description available.
3

Identification of human hair follicle antigens targeted in the presumptive autoimmune hair follicle disorder Alopecia Areata and their potential functional relevance In Vitro. Methods development for isolation and identification of Alopecia Areata-relevant human hair follicle antigens using a proteomics approach and their functional assessment using an Ex Vivo hair follicle organ culture model.

Leung, Man Ching January 2008 (has links)
Alopecia areata (AA) is a putative autoimmune hair loss disorder. It mainly affects the scalp hair but can also involve body hair, and can also affect the nail and the eye. While there are may be several lines of evidence to support the autoimmune basis of AA, there is still very little information on the hair follicle autoantigen(s) involved in its pathogenesis. In this project, serum antibodies (AA=10, control=10) were used to immunoprecipitate AA-relevant target antigens from normal human scalp hair follicle extracts. These immunoprecipitates were analysed by LC-MALDI-TOF/TOF mass spectrometry for target protein identification. This part of the project involved substantial methods development. Trichohyalin was immunoprecipitated by all AA sera, but by only 5 normal sera. Importantly, the mean Mascot scores of the AA group was significantly higher than the normal group (p=0.005). Keratin 16 was also identified from immunoprecipitates as another potential AA-relevant target antigen. Functional studies by ex vivo whole hair follicle organ culture using commercial antibodies to trichohyalin and keratin 16 significantly inhibited hair fibre elongation compared to controls. Indirect immunofluorescence studies revealed that AA sera contained higher immunoreactivity against normal human scalp anagen hair follicles compared to normal sera. Immunoreactivities were mainly in the outer root sheath and inner root sheath, and less so to the medulla and hair bulb matrix. Double immunofluorescence studies of AA and normal serum with anti-trichohyalin antibody (AE15) revealed co-localisation of 9 of the AA sera antibodies with trichohyalin in the inner root sheath (mostly in Henle¿s, less in Huxley¿s/inner root sheath cuticle), but only weakly in 3 normal sera. This study supports the involvement of an antibody response to anagen-specific hair follicles antigens in AA. Moreover, there may be some evidence that these antibodies may have a pathogenic role.
4

Identification of human hair follicle antigens targeted in the presumptive autoimmune hair follicle disorder alopecia areata and their potential functional relevance in vitro : methods development for isolation and identification of alopecia areata-relevant human hair follicle antigens using a proteomics approach and their functional assessment using an ex vivo hair follicle organ culture model

Leung, Man Ching January 2008 (has links)
Alopecia areata (AA) is a putative autoimmune hair loss disorder. It mainly affects the scalp hair but can also involve body hair, and can also affect the nail and the eye. While there are may be several lines of evidence to support the autoimmune basis of AA, there is still very little information on the hair follicle autoantigen(s) involved in its pathogenesis. In this project, serum antibodies (AA=10, control=10) were used to immunoprecipitate AA-relevant target antigens from normal human scalp hair follicle extracts. These immunoprecipitates were analysed by LC-MALDI-TOF/TOF mass spectrometry for target protein identification. This part of the project involved substantial methods development. Trichohyalin was immunoprecipitated by all AA sera, but by only 5 normal sera. Importantly, the mean Mascot scores of the AA group was significantly higher than the normal group (p=0.005). Keratin 16 was also identified from immunoprecipitates as another potential AA-relevant target antigen. Functional studies by ex vivo whole hair follicle organ culture using commercial antibodies to trichohyalin and keratin 16 significantly inhibited hair fibre elongation compared to controls. Indirect immunofluorescence studies revealed that AA sera contained higher immunoreactivity against normal human scalp anagen hair follicles compared to normal sera. Immunoreactivities were mainly in the outer root sheath and inner root sheath, and less so to the medulla and hair bulb matrix. Double immunofluorescence studies of AA and normal serum with anti-trichohyalin antibody (AE15) revealed co-localisation of 9 of the AA sera antibodies with trichohyalin in the inner root sheath (mostly in Henle's, less in Huxley's/inner root sheath cuticle), but only weakly in 3 normal sera. This study supports the involvement of an antibody response to anagen-specific hair follicles antigens in AA. Moreover, there may be some evidence that these antibodies may have a pathogenic role.
5

A proteomic analysis of drought and salt stress responsive proteins of different sorghum varieties

Ngara, Rudo January 2009 (has links)
<p>This study reports on a proteomic analysis of sorghum proteomes in response to salt and hyperosmotic stresses. Two-dimensional gel electrophoresis (2DE) in combination with mass spectrometry (MS) was used to separate, visualise and identify sorghum proteins using both sorghum cell suspension cultures and whole plants. The sorghum cell suspension culture system was used as a source of culture filtrate (CF) proteins. Of the 25 visualised CBB stained CF spots, 15 abundant and well-resolved spots were selected for identification using a combination of MALDI-TOF and MALDI-TOFTOF MS, and database searching. Of these spots, 14 were positively identified as peroxidases, germin proteins, oxalate oxidases and alpha-galactosidases with known functions in signalling processes, defense mechanisms and cell wall metabolism.</p>
6

A proteomic analysis of drought and salt stress responsive proteins of different sorghum varieties

Ngara, Rudo January 2009 (has links)
<p>This study reports on a proteomic analysis of sorghum proteomes in response to salt and hyperosmotic stresses. Two-dimensional gel electrophoresis (2DE) in combination with mass spectrometry (MS) was used to separate, visualise and identify sorghum proteins using both sorghum cell suspension cultures and whole plants. The sorghum cell suspension culture system was used as a source of culture filtrate (CF) proteins. Of the 25 visualised CBB stained CF spots, 15 abundant and well-resolved spots were selected for identification using a combination of MALDI-TOF and MALDI-TOFTOF MS, and database searching. Of these spots, 14 were positively identified as peroxidases, germin proteins, oxalate oxidases and alpha-galactosidases with known functions in signalling processes, defense mechanisms and cell wall metabolism.</p>
7

A proteomic analysis of drought and salt stress responsive proteins of different sorghum varieties

Ngara, Rudo January 2009 (has links)
<p>This study reports on a proteomic analysis of sorghum proteomes in response to salt and hyperosmotic stresses. Two-dimensional gel electrophoresis (2DE) in combination with mass spectrometry (MS) was used to separate, visualise and identify sorghum proteins using both sorghum cell suspension cultures and whole plants. The sorghum cell suspension culture system was used as a source of culture filtrate (CF) proteins. Of the 25 visualised CBB stained CF spots, 15 abundant and well-resolved spots were selected for identification using a combination of MALDI-TOF and MALDI-TOFTOF MS, and database searching. Of these spots, 14 were positively identified as peroxidases, germin proteins, oxalate oxidases and alpha-galactosidases with known functions in signalling processes, defense mechanisms and cell wall metabolism.</p>
8

A proteomic analysis of drought and salt stress responsive proteins of different sorghum varieties

Ngara, Rudo January 2009 (has links)
<p>This study reports on a proteomic analysis of sorghum proteomes in response to salt and hyperosmotic stresses. Two-dimensional gel electrophoresis (2DE) in combination with mass spectrometry (MS) was used to separate, visualise and identify sorghum proteins using both sorghum cell suspension cultures and whole plants. The sorghum cell suspension culture system was used as a source of culture filtrate (CF) proteins. Of the 25 visualised CBB stained CF spots, 15 abundant and well-resolved spots were selected for identification using a combination of MALDI-TOF and MALDI-TOFTOF MS, and database searching. Of these spots, 14 were positively identified as peroxidases, germin proteins, oxalate oxidases and alpha-galactosidases with known functions in signalling processes, defense mechanisms and cell wall metabolism.</p>
9

A proteomic analysis of drought and salt stress responsive proteins of different sorghum varieties

Ngara, Rudo January 2009 (has links)
Philosophiae Doctor - PhD / This study reports on a proteomic analysis of sorghum proteomes in response to salt and hyperosmotic stresses. Two-dimensional gel electrophoresis (2DE) in combination with mass spectrometry (MS) was used to separate, visualise and identify sorghum proteins using both sorghum cell suspension cultures and whole plants. The sorghum cell suspension culture system was used as a source of culture filtrate (CF) proteins. Of the 25 visualised CBB stained CF spots, 15 abundant and well-resolved spots were selected for identification using a combination of MALDI-TOF and MALDI-TOFTOF MS, and database searching. Of these spots, 14 were positively identified as peroxidases, germin proteins, oxalate oxidases and alpha-galactosidases with known functions in signalling processes, defense mechanisms and cell wall metabolism. / South Africa
10

Genomic and proteomic analysis of drought tolerance in Sorghum (Sorghum bicolor (L.) Moench)

Woldesemayat, Adunga,Abdi January 2014 (has links)
Philosophiae Doctor - PhD / Drought is the most complex phenomenon that remained to be a potential and historic challenge to human welfare. It affects plant productivity by eliciting perturbations related to a pathway that controls a normal, functionally intact biological process of the plant. Sorghum (Sorghum bicolor (L.) Moench), a drought adapted model cereal grass is a potential target in the modem agricultural research towards understanding the molecular and cellular basis of drought tolerance. This study reports on the genomic and proteomic findings of drought tolerance in sorghum combining the results from in silica and experimental analysis. Pipeline that includes mapping expression data from 92 normalized cDNAs to genomic loci were used to identify drought tolerant genes. Integrative analysis was carried out using sequence similarity search, metabolic pathway, gene expression profiling and orthology relation to investigate genes of interest. Gene structure prediction was conducted using combination of ab initio and extrinsic evidence-driven information employing multi-criteria sources to improve accuracy. Gene ontology was used to cross-validate and to functionally assign and enrich genes. An integrated approach that subtly combines functional ontology based semantic data with expression profiling and biological networks was employed to analyse gene association with plant phenotypes and to identify and genetically dissect complex drought tolerance in sorghum. The gramene database was used to identify genes with direct or indirect association to drought related ontology terms in sorghum. Where direct association for sorghum genes were not available, genes were captured using Ensemble Biomart by transitive association based on the putative functions of sorghum orthologs in closely related species. Ontology mapping represented a direct or transitive association of genes to multiple drought related ontology terms based on sorghum specific genes or orthologs in related species. Correlation of genes to enriched gene ontology (GO)-terms (p-value < 0.05) related to the whole-plant structure was used to determine the extent of gene-phynotype association across-species and environmental stresses.

Page generated in 0.0221 seconds