• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Lanthanide complexes containing macrocyclic ligands for magnetic resonance imaging contrast agents

Wong, Kam-cheung, 王錦祥 January 2009 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
22

Manganese titanium perovskites as anodes for solid oxide fuel cells

Ovalle, Alejandro January 2008 (has links)
A new family of perovskite titanates with formulae La4+nSr8-nTi12-nMnnO38 and La4Sr8Ti12-nMnnO38-δ have been investigated as potential fuel electrode materials for SOFCs. The series La4+nSr8-nTi12-nMnnO38 present layered domains within their structure. As such layers appear to have a large negative effect over the electrochemical properties only a few compounds have been characterised. The series La4Sr8Ti12-nMnnO38-δ present a rhombohedral (R-3c) unit cell at room temperature which becomes cubic when increasing the temperature up to 900°C both in air and in reducing conditions. The primitive volume correlates with the oxygen content for the reduced samples. TGA and magnetic studies have revealed that the Mn present is mainly as Mn⁺³. Preliminary HRTEM investigations have revealed that some crystallographic shears distributed randomly within a perovskite matrix remain in the structure, which implies that the oxygen overstoichiometry is compatible with rhombohedral distortions in the oxygen sublattice. Mn substitution does not have a large impact on the bulk conductivity of the phases studied, which remains close to the values observed in other related titanates, although the grain boundary contributions are largely improved. Relatively low polarisation resistances were observed under both hydrogen and methane conditions for the lowest n compounds of the series. The anodic overpotential for n=1 was fairly low to those reported in the literature for other materials and especially for titanate-based anodes, i.e. a value of 55mV at 0.5A/cm2, at 950°C, under wet hydrogen was obtained. Additionally, a value 72mV was obtained in the same conditions under methane. These values indicate that the use of Mn as dopant for perovskite-related titanates enhanced electrochemical performance of these anodes, especially at high temperatures.
23

An Investigation of Capacity Fading of Manganese Spinels Stored at Elevated Temperature

Sano, Mitsuru, Inoue, Takao January 1998 (has links)
No description available.
24

Lanthanide complexes containing macrocyclic ligands for magnetic resonance imaging contrast agents

Wong, Kam-cheung, January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2010. / Includes bibliographical references (leaves 229-230). Also available in print.
25

Bioconjugation reactions of peptides and proteins mediated by manganese, ruthenium and gold compounds

Chan, On-yee., 陳安怡. January 2010 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
26

Layered lithium nickel manganese cobalt dioxide as a cathode material for Li-ion batteries

Xiao, Jie. January 2008 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Department of Chemistry, 2008. / Includes bibliographical references.
27

Use of Manganese Compounds and Microbial Fuel Cells in Wastewater Treatment.

Jiang, Junli January 2011 (has links)
Manganese compounds have a high potential for treating wastewater, both for utilizing its oxidation, flocculation ability and catalyst ability in anaerobic nitrification. The promising use of manganese compounds (such as permanganate and manganese dioxide) is regarded as an effective method of treating organic compounds in wastewater from municipal and industrial wastewater. Now it is newly realized possibilities to combine manganese compounds with Microbial Fuel Cell technology. Aiming at reusing the biomass in anaerobic digested sludge for degrading organic pollutants and simultaneously recovering electric energy, Single-chamber Microbial Fuel Cell (SMFC) system was developed and investigated during the main experimental part. Considering the electricity generation rate and characteristics of cathode, MnO2 was used as the reactant on the cathode electrode; meanwhile, the substrate types in anode compartment also were investigated and then extra sodium acetate was added to investigate the power generation performance. Two parts of the research were carried out during the whole project. The chemical treatment part was mainly designed to find out the best dosage of KMnO4 in flocculation when concurrent reacted with magnesium and calcium compounds when treating reject wastewater from digester at Hammarby Sjöstadsverk. The other part was studied to see whether it is possible to improve electricity generation by degrading organic pollutants when MnO2 was used as a cathodic reactant in sediment microbial fuel cell which consisted of anaerobic digested sludge from UASB.
28

Synthesis and characterization of LiNi0.6Mn0.35Co0.05O2 and Li2FeSiO4/C as electrodes for rechargeable lithium ion battery

Hong, Pengda., 洪鹏达. January 2011 (has links)
The rechargeable lithium ion batteries (LIB) are playing increasingly important roles in powering portal commercial electronic devices. They are also the potential power sources of electric mobile vehicles. The first kind of the cathode materials, LiXCoO2, was commercialized by Sony Company in 1980s, and it is still widely used today in LIB. However, the high cost of cobalt source, its environmental unfriendliness and the safety issue of LiXCoO2 have hindered its widespread usage today. Searching for alternative cathode materials with low cost of the precursors, being environmentally benign and more stable in usage has become a hot topic in LIB research and development. In the first part of this study, lithium nickel manganese cobalt oxide (LiNi0.6Mn0.35Co0.05O2) is studied as the electrode. The materials are synthesized at high temperatures by solid state reaction method. The effect of synthesis temperature on the electrochemical performance is investigated, where characterizations by, for example, X-ray diffraction (XRD) and scanning electron microscopy (SEM), for particle size distribution, specific surface area, and charge-discharge property, are done over samples prepared at different conditions for comparison. The electrochemical tests of the rechargeable Li ion batteries using LiNi0.6Mn0.35Co0.05 cathode prepared at optimum conditions are carried out in various voltage ranges, at different discharge rates and at high temperature. In another set of experiments, the material is adopted as anode with lithium foil as the cathode, and its capacitance is tested. In the second part of this study, the iron based cathode material is investigated. Lithium iron orthosilicate with carbon coating is synthesized at 700℃ by solid state reaction, which is assisted by high energy ball milling. Characterizations are done for discharge capacities of the samples with different carbon weight ratio coatings. / published_or_final_version / Physics / Master / Master of Philosophy
29

Sintese, processamento e caracterizacao das meia-celulas de oxido solido catodo/eletrolito de manganito de lantanio dopado com estroncio/zirconia estabilizada com itria / Synthesis, processing and characterization of the solid oxide half-cells cathode/electrolyte of strontium-doped lanthanum manganite/yttria-stabilized zirconium

CHIBA, RUBENS 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:27:23Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:51Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
30

Sintese, processamento e caracterizacao das meia-celulas de oxido solido catodo/eletrolito de manganito de lantanio dopado com estroncio/zirconia estabilizada com itria / Synthesis, processing and characterization of the solid oxide half-cells cathode/electrolyte of strontium-doped lanthanum manganite/yttria-stabilized zirconium

CHIBA, RUBENS 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:27:23Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:51Z (GMT). No. of bitstreams: 0 / Os filmes cerâmicos de manganito de lantânio dopado com estrôncio (LSM) e de manganito de lantânio dopado com estrôncio/zircônia estabilizada com ítria (LSM/YSZ) são utilizados como catodos das células a combustível de óxido sólido de temperatura alta (CaCOSTA). Estes filmes cerâmicos porosos foram depositados sobre o substrato cerâmico denso de YSZ, utilizado como eletrólito, componente estrutural do módulo, assim conferindo uma configuração de meia-célula denominada auto-suporte. O estudo da meia-célula é fundamental, pois na interface catodo/eletrólito ocorre a reação de redução do oxigênio, conseqüentemente influenciando no desempenho da CaCOSTA. Neste sentido, o presente trabalho contribui para a síntese de pós de LSM e LSM/YSZ e para o processamento de filmes finos, utilizando a técnica de pulverização de pó úmido, adotada para a conformação dos filmes cerâmicos por permitir a obtenção de camadas porosas com espessuras variadas na ordem de micrômetros. Os pós de LSM foram sintetizados pela técnica de citratos e os pós de LSM/YSZ pela técnica de mistura de sólidos. Na etapa de conformação foram preparadas suspensões orgânicas de LSM e LSM/YSZ alimentada por gravidade em um aerógrafo manual. Para a conformação do substrato de YSZ utilizou-se uma prensa uniaxial hidráulica. Foram possíveis a obtenção das meia-células de óxido sólido catodo/eletrólito de estruturas cristalinas hexagonal para a fase LSM e cúbica para a fase YSZ. E as micrografias das meia-células mostram que o substrato YSZ é denso, suficiente para ser utilizado como eletrólito sólido, e os filmes de LSM e LSM/YSZ apresentam-se porosos com espessura de aproximadamente 30 μm e com boa aderência entre os catodos e o eletrólito. A presença do catodo compósito entre o catodo LSM e o substrato YSZ, possibilitou um aumento no desempenho eletroquímico na reação de redução do oxigênio. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP

Page generated in 0.026 seconds