• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • Tagged with
  • 39
  • 39
  • 39
  • 35
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Schur apolarity and how to use it

Staffolani, Reynaldo 14 February 2022 (has links)
The aim of this thesis is to investigate the tensor decomposition of structured tensors related to SL(n)-irreducible representations. Structured tensors are multilinear objects satisfying specific symmetry relations and their decompositions are of great interest in the applications. In this thesis we look for the decompositions of tensors belonging to irreducible representations of SL(n) into sum of elementary objects associated to points of SL(n)-rational hoogeneous varieties. This family includes Veronese varieties (symmetric tensors), Grassmann varieties (skew-symmetric tensors), and flag varieties. A classic tool to study the decomposition of symmetric tensors is the apolarity theory, which dates back to Sylvester. An analogous skew-symmetric apolarity theory for skew-symmetric tensors have been developed only few years ago. In this thesis we describe a global apolarity theory called Schur apolarity theory, which is suitable for tensors belonging to any irreducible representation of SL(n). Examples, properties and applications of such apolarity are studied with details and original results both in algebra and geoemtry are provided.
32

Existential completion and pseudo-distributive laws: an algebraic approach to the completion of doctrines

Trotta, Davide 17 December 2019 (has links)
The main purpose of this thesis is to combine the categorical approach to logic given by the study of doctrines, with the universal algebraic techniques given by the theory of the pseudo-monads and pseudo-distributive laws. Every completions of doctrines is then formalized by a pseudo-monad, and then combinations of these are studied by the analysis of the pseudo-distributive laws. The starting point are the works of Maietti and Rosolini, in which they describe three completions for elementary doctrines: the first which adds full comprehensions, the second comprehensive diagonals, and the third quotients. Then we determine the existential completion of a primary doctrine, and we prove that the 2-monad obtained from it is lax-idempotent, and that the 2-category of existential doctrines is isomorphic to the 2-category of algebras for this 2-monad. We also show that the existential completion of an elementary doctrine is again elementary and we extend the notion of exact completion of an elementary existential doctrine to an arbitrary elementary doctrine. Finally we present the elementary completion for a primary doctrine whose base category has finite limits. In particular we prove that, using a general results about unification for first order languages, we can easily add finite limits to a syntactic category, and then apply the elementary completion for syntactic doctrines. We conclude with a complete description of elementary completion for primary doctrine whose base category is the free product completion of a discrete category, and we show that the 2-monad constructed from the 2-adjunction is lax-idempotent.
33

Pattern posets: enumerative, algebraic and algorithmic issues

Cervetti, Matteo 22 March 2021 (has links)
The study of patterns in combinatorial structures has grown up in the past few decades to one of the most active trends of research in combinatorics. Historically, the study of permutations which are constrained by not containing subsequences ordered in various prescribed ways has been motivated by the problem of sorting permutations with certain devices. However, the richness of this notion became especially evident from its plentiful appearances in several very different disciplines, such as pure mathematics, mathematical physics, computer science,biology, and many others. In the last decades, similar notions of patterns have been considered on discrete structures other than permutations, such as integer sequences, lattice paths, graphs, matchings and set partitions. In the first part of this talk I will introduce the general framework of pattern posets and some classical problems about patterns. In the second part of this talk I will present some enumerative results obtained in my PhD thesis about patterns in permutations, lattice paths and matchings. In particular I will describe a generating tree with a single label for permutations avoiding the vincular pattern 1 - 32 - 4, a finite automata approach to enumerate lattice excursions avoiding a single pattern and some results about matchings avoiding juxtapositions and liftings of patterns.
34

Mappe comomento omotopiche in geometria multisimplettica / HOMOTOPY COMOMENTUM MAPS IN MULTISYMPLECTIC GEOMETRY

MITI, ANTONIO MICHELE 01 April 2021 (has links)
Le mappe comomento omotopiche sono una generalizzazione della nozione di mappa momento introdotta al fine di estendere il concetto di azione hamiltoniana al contesto della geometria multisimplettica. L'obiettivo di questa tesi è fornire nuove costruzioni esplicite ed esempi concreti di azioni di gruppi di Lie su varietà multisimplettiche che ammettono delle mappe comomento. Il primo risultato è una classificazione completa delle azioni di gruppi compatti su sfere multisimplettiche. In questo caso, l'esistenza di mappe comomento omotopiche dipende dalla dimensione della sfera e dalla transitività dell'azione di gruppo. Il secondo risultato è la costruzione esplicita di un analogo multisimplettico dell’inclusione dell'algebra di Poisson di una varietà simplettica dentro il corrispondente algebroide di Lie twistato. E’ possibile dimostrare che questa inclusione soddisfa una relazione di compatibilità nel caso di varietà multisimplettiche gauge-correlate in presenza di un'azione di gruppo Hamiltoniana. Tale costruzione potrebbe giocare un ruolo nella formulazione di un analogo multisimplettico della procedura di quantizzazione geometrica. L’ultimo risultato è una costruzione concreta di una mappa comomento omotopica relativa all'azione multisimplettica del gruppo di diffeomorfismi che preservano la forma volume dello spazio Euclideo. Questa mappa ammette naturalmente un’interpretazione idrodinamica, nello specifico trasgredisce alla mappa comomento idrodinamica introdotta da Arnol'd, Marsden, Weinstein e altri. La mappa comomento così costruita può essere inoltre messa in relazione alla teoria dei nodi avvalendosi dell’approccio ai link nel formalismo dei vortici. Questo punto di apre la strada a un'interpretazione semiclassica del polinomio HOMFLYPT nel linguaggio della quantizzazione geometrica. / Homotopy comomentum maps are a higher generalization of the notion of moment map introduced to extend the concept of Hamiltonian actions to the framework of multisymplectic geometry. Loosely speaking, higher means passing from considering symplectic $2$-form to consider differential forms in higher degrees. The goal of this thesis is to provide new explicit constructions and concrete examples related to group actions on multisymplectic manifolds admitting homotopy comomentum maps. The first result is a complete classification of compact group actions on multisymplectic spheres. The existence of a homotopy comomentum maps pertaining to the latter depends on the dimension of the sphere and the transitivity of the group action. Several concrete examples of such actions are also provided. The second novel result is the explicit construction of the higher analogue of the embedding of the Poisson algebra of a given symplectic manifold into the corresponding twisted Lie algebroid. It is also proved a compatibility condition for such embedding for gauge-related multisymplectic manifolds in presence of a compatible Hamiltonian group action. The latter construction could play a role in determining the multisymplectic analogue of the geometric quantization procedure. Finally a concrete construction of a homotopy comomentum map for the action of the group of volume-preserving diffeomorphisms on the multisymplectic 3-dimensional Euclidean space is proposed. This map can be naturally related to hydrodynamics. For instance, it transgresses to the standard hydrodynamical co-momentum map of Arnol'd, Marsden and Weinstein and others. A slight generalization of this construction to a special class of Riemannian manifolds is also provided. The explicitly constructed homotopy comomentum map can be also related to knot theory by virtue of the aforementioned hydrodynamical interpretation. Namely, it allows for a reinterpretation of (higher-order) linking numbers in terms of multisymplectic conserved quantities. As an aside, it also paves the road for a semiclassical interpretation of the HOMFLYPT polynomial in the language of geometric quantization.
35

Incremental Linearization for Satisfiability and Verification Modulo Nonlinear Arithmetic and Transcendental Functions

Irfan, Ahmed January 2018 (has links)
Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order formula with respect to some theory or combination of theories; Verification Modulo Theories (VMT) is the problem of analyzing the reachability for transition systems represented in terms of SMT formulae. In this thesis, we tackle the problems of SMT and VMT over the theories of polynomials over the reals (NRA), over the integers (NIA), and of NRA augmented with transcendental functions (NTA). We propose a new abstraction-refinement approach called Incremental Linearization. The idea is to abstract nonlinear multiplication and transcendental functions as uninterpreted functions in an abstract domain limited to linear arithmetic with uninterpreted functions. The uninterpreted functions are incrementally axiomatized by means of upper- and lower-bounding piecewise-linear constraints. In the case of transcendental functions, particular care is required to ensure the soundness of the abstraction. The method has been implemented in the MathSAT SMT solver, and in the nuXmv VMT model checker. An extensive experimental evaluation on a wide set of benchmarks from verification and mathematics demonstrates the generality and the effectiveness of our approach. Moreover, the proposed technique is an enabler for the (nonlinear) VMT problems arising in practical scenarios with design environments such as Simulink. This capability has been achieved by integrating nuXmv with Simulink using a compilation-based approach and is evaluated on an industrial-level case study.
36

Local coherence of hearts in the derived category of a commutative ring

Martini, Lorenzo 13 October 2022 (has links)
Approximation theory is a fundamental tool in order to study the representation theory of a ring R. Roughly speaking, it consists in determining suitable additive or abelian subcategories of the whole module category Mod-R with nice enough functorial properties. For example, torsion theory is a well suited incarnation of approximation theory. Of course, such an idea has been generalised to the additive setting itself, so that both Mod-R and other interesting categories related with R may be linked functorially. By the seminal work of Beilinson, Bernstein and Deligne (1982), the derived category of the ring turns out to admit useful torsion theories, called t-structures: they are pairs of full subcategories of D(R) whose intersection, called the heart, is always an abelian category. The so-called standard t-structure of D(R) has as its heart the module category Mod-R itself. Since then a lot of results devoted to the module theoretic characterisation of the hearts have been achieved, providing evidence of the usefulness of the t-structures in the representation theory of R. In 2020, following a research line promoted by many other authors, Saorin and Stovicek proved that the heart of any compactly generated t-structure is always a locally finitely presented Grothendieck categories (actually, this is true for any t-structure in a triangulated category with coproducts). Essentially, this means that the hearts of D(R) come equipped with a finiteness condition miming that one valid in Mod-R. In the present thesis we tackle the problem of characterising when the hearts of certain compactly generated t-structures of a commutative ring are even locally coherent. In this commutative context, after the works of Neeman and Alonso, Jeremias and Saorin, compactly generated t-structures turned out to be very interesting over a noetherian ring, for they are in bijection with the Thomason filtrations of the prime spectrum. In other words, they are classified by geometric objects, moreover their constituent subcategories have a precise cohomological description. However, if the ascending chain condition lacks, such classification is somehow partial, though provided by Hrbek. The crucial point is that the constituents of the t-structures have a different description w.r.t. that available in the noetherian setting, yet if one copies the latter for an arbitrary ring still obtains a t-structure, but it is not clear whether it must be compactly generated. Consequently, pursuing the study of the local coherence of the hearts given by a Thomason filtration, we ended by considering two t-structures. Our technique in order to face the lack of the ascending chain condition relies on a further approximation of the hearts by means of suitable torsion theories. The main results of the thesis are the following: we prove that for the so-called weakly bounded below Thomason filtrations the two t-structures have the same heart (therefore it is always locally finitely presented), and we show that they coincide if and only they are both compactly generated. Moreover, we achieve a complete characterisation of the local coherence for the hearts of the Thomason filtrations of finite length.
37

Semantic Image Interpretation - Integration of Numerical Data and Logical Knowledge for Cognitive Vision

Donadello, Ivan January 2018 (has links)
Semantic Image Interpretation (SII) is the process of generating a structured description of the content of an input image. This description is encoded as a labelled direct graph where nodes correspond to objects in the image and edges to semantic relations between objects. Such a detailed structure allows a more accurate searching and retrieval of images. In this thesis, we propose two well-founded methods for SII. Both methods exploit background knowledge, in the form of logical constraints of a knowledge base, about the domain of the images. The first method formalizes the SII as the extraction of a partial model of a knowledge base. Partial models are built with a clustering and reasoning algorithm that considers both low-level and semantic features of images. The second method uses the framework Logic Tensor Networks to build the labelled direct graph of an image. This framework is able to learn from data in presence of the logical constraints of the knowledge base. Therefore, the graph construction is performed by predicting the labels of the nodes and the relations according to the logical constraints and the features of the objects in the image. These methods improve the state-of-the-art by introducing two well-founded methodologies that integrate low-level and semantic features of images with logical knowledge. Indeed, other methods, do not deal with low-level features or use only statistical knowledge coming from training sets or corpora. Moreover, the second method overcomes the performance of the state-of-the-art on the standard task of visual relationship detection.
38

Elliptic Loops

Taufer, Daniele 11 June 2020 (has links)
Given an elliptic curve E over Fp and an integer e ≥ 1, we define a new object, called “elliptic loop”, as the set of plane projective points over Z/p^e Z lying over E, endowed with an operation inherited by the curve addition. This object is proved to be a power-associative abelian algebraic loop. Its substructures are investigated by means of other algebraic cubics defined over the same ring, which we named “shadow curve” and “layers”. When E has trace 1, a distinctive behavior is detected and employed for producing an isomorphism attack to the discrete logarithm on this family of curves. Stronger properties are derived for small values of e, which lead to an explicit description of the infinity part and to characterizing the geometry of rational |E|-torsion points. / Data una curva ellittica E su Fp ed un intero e ≥ 1, definiamo un nuovo oggetto, chiamato "loop ellittico", come l'insieme dei punti nel piano proiettivo su Z/p^e Z che stanno sopra ad E, dotato di una operazione ereditata dalla somma di punti sulla curva. Questo oggetto si prova essere un loop algebrico con associatività delle potenze. Le sue sotto-strutture sono investigate utilizzando altre cubiche definite sullo stesso anello, che abbiamo chiamato "curva ombra" e "strati". Quando E ha traccia 1, un comportamento speciale viene notato e sfruttato per produrre un attacco di isomorfismo al problema del logaritmo discreto su questa famiglia di curve. Migliori proprietà vengono trovate per bassi valori di e, che portano ad una descrizione esplicita della parte all'infinito e alla caratterizzazione della geometria dei punti razionali di |E|-torsione.
39

Global and local Q-algebrization problems in real algebraic geometry

Savi, Enrico 10 May 2023 (has links)
In 2020 Parusiński and Rond proved that every algebraic set X ⊂ R^n is homeomorphic to an algebraic set X’ ⊂ R^n which is described globally (and also locally) by polynomial equations whose coefficients are real algebraic numbers. In general, the following problem was widely open: Open Problem. Is every real algebraic set homeomorphic to a real algebraic set defined by polynomial equations with rational coefficients? The aim of my PhD thesis is to provide classes of real algebraic sets that positively answer to above Open Problem. In Chapter 1 I introduce a new theory of real and complex algebraic geometry over subfields recently developed by Fernando and Ghiloni. In particular, the main notion to outline is the so called R|Q-regularity of points of a Q-algebraic set X ⊂ R^n. This definition suggests a natural notion of a Q-nonsingular Q-algebraic set X ⊂ R^n. The study of Q-nonsingular Q-algebraic sets is the main topic of Chapter 2. Then, in Chapter 3 I introduce Q-algebraic approximation techniques a là Akbulut-King developed in collaboration with Ghiloni and the main consequences we proved, that are, versions ‘over Q’ of the classical and the relative Nash-Tognoli theorems. Last results can be found in in Chapters 3 & 4, respectively. In particular, we obtained a positive answer to above Open Problem in the case of compact nonsingular algebraic sets. Then, after extending ‘over Q’ the Akbulut-King blowing down lemma, we are in position to give a complete positive answer to above Open Problem also in the case of compact algebraic sets with isolated singularities in Chapter 4. After algebraic Alexandroff compactification, we obtained a positive answer also in the case of non-compact algebraic sets with isolated singularities. Other related topics are investigated in Chapter 4 such as the existence of Q-nonsingular Q-algebraic models of Nash manifolds over every real closed field and an answer to the Q-algebrization problem for germs of an isolated algebraic singularity. Appendices A & B contain results on Nash approximation and an evenness criterion for the degree of global smoothings of subanalytic sets, respectively.

Page generated in 0.0289 seconds