11 |
Long-time behavior of solutions to the system of crystal acoustics for tetragonal crystalsMelotti, Claudio <1983> 06 June 2011 (has links)
No description available.
|
12 |
Weighted Inequalities and Lipschitz SpacesTupputi, Maria Rosaria <1981> 08 June 2012 (has links)
In this thesis I have characterized the trace measures for particular potential spaces of functions defined on R^n, but "mollified" so that the potentials are de facto defined on the upper half-space of R^n. The potential functions are kind Riesz-Bessel. The characterization of trace measures for these spaces is a test condition on elementary sets of the upper half-space. To prove the test condition as sufficient condition for trace measures, I had give an extension to the case of upper half-space of the Muckenhoupt-Wheeden and Wolff inequalities. Finally I characterized the Carleson-trace measures for Besov spaces of discrete martingales. This is a simplified discrete model for harmonic extensions of Lipschitz-Besov spaces.
|
13 |
Harnack inequalities in sub-Riemannian settingsTralli, Giulio <1985> 02 May 2013 (has links)
In the present thesis, we discuss the main notions of an axiomatic approach for an invariant Harnack inequality. This procedure, originated from techniques for fully nonlinear elliptic operators, has been developed by Di Fazio, Gutiérrez, and Lanconelli in the general settings of doubling Hölder quasi-metric spaces. The main tools of the approach are the so-called double ball property and critical density property: the validity of these properties implies an invariant Harnack inequality. We are mainly interested in the horizontally elliptic operators, i.e. some second order linear degenerate-elliptic operators which are elliptic with respect to the horizontal directions of a Carnot group. An invariant Harnack inequality of Krylov-Safonov type is still an open problem in this context. In the thesis we show how the double ball property is related to the solvability of a kind of exterior Dirichlet problem for these operators. More precisely, it is a consequence of the existence of some suitable interior barrier functions of Bouligand-type. By following these ideas, we prove the double ball property for a generic step two Carnot group. Regarding the critical density, we generalize to the setting of H-type groups some arguments by Gutiérrez and Tournier for the Heisenberg group. We recognize that the critical density holds true in these peculiar contexts by assuming a Cordes-Landis type condition for the coefficient matrix of the operator. By the axiomatic approach, we thus prove an invariant Harnack inequality in H-type groups which is uniform in the class of the coefficient matrices with prescribed bounds for the eigenvalues and satisfying such a Cordes-Landis condition.
|
14 |
Classical limit of the Nelson modelFalconi, Marco <1983> 08 June 2012 (has links)
Since the development of quantum mechanics it has been natural to analyze the connection between classical and quantum mechanical descriptions of physical systems. In particular one should expect that in some sense when quantum mechanical effects becomes negligible the system will behave like it is dictated by classical mechanics. One famous relation between classical and quantum theory is due to Ehrenfest. This result was later developed and put on firm mathematical foundations by Hepp. He proved that matrix elements of bounded functions of quantum observables between suitable coherents states (that depend on Planck's constant h) converge to classical values evolving according to the expected classical equations when h goes to zero. His results were later generalized by Ginibre and Velo to bosonic systems with infinite degrees of freedom and scattering theory.
In this thesis we study the classical limit of Nelson model, that describes non relativistic particles, whose evolution is dictated by Schrödinger equation, interacting with a scalar relativistic field, whose evolution is dictated by Klein-Gordon equation, by means of a Yukawa-type potential. The classical limit is a mean field and weak coupling limit. We proved that the transition amplitude of a creation or annihilation operator, between suitable coherent states, converges in the classical limit to the solution of the system of differential equations that describes the classical evolution of the theory. The quantum evolution operator converges to the evolution operator of fluctuations around the classical solution. Transition amplitudes of normal ordered products of creation and annihilation operators between coherent states converge to suitable products of the classical solutions. Transition amplitudes of normal ordered products of creation and annihilation operators between fixed particle states converge to an average of products of classical solutions, corresponding to different initial conditions.
|
15 |
Different approaches to epidemics modelling: from theoretical analysis to real dataSottile, Sara 23 January 2023 (has links)
This work aims at presenting different approaches to epidemics modelling. It consists of two main topics, which cover both theoretical and computational approaches to the development and analysis of mathematical models of infectious diseases. The first half regards the formulation and the analysis of SAIRS (Susceptible - Asyptomatics infected - Infected symptomatic - Recovered - Susceptible) epidemic models, including the possibility of vaccination. The model is formulated as a system of ordinary differential equations (ODEs), for which we provided a complete global stability analysis, combining two different approaches: the classical Lyapunov stability theorem, and a geometric approach, which generalises the Poincaré-Bendixon theorem. Afterwards, the model has been generalised using heterogeneous networks, which may describe different groups of individuals or different cities. For this model, the global stability analysis has been developed using the graph-theoretic approach to find Lyapunov functions. The second part of the thesis covers simulations based approaches to modelling heterogeneous humans interactions in epidemics. The first example we provide is an application with synthetic data. We investigate a stochastic SIR (Susceptible - Infected symptomatic - Recovered) dynamics on a network, by using a specialised version of the Gillespie algorithm. The other two examples we show consist of real data applications. Both regard the cost-benefit analysis of the introduction of new influenza vaccines. Both analyses have been performed using a multi-group SEIR (Susceptible - Exposed - Infected - Recovered) epidemiological model divided by age classes.
|
16 |
Human Behavior in Epidemic ModellingPoletti, Piero January 2010 (has links)
Mathematical models represent a powerful tool for investigating the dynamics of human infection diseases, providing useful predictions about the spread of a disease and the effectiveness of possible control measures.
One of the central aspects to understand the dynamics of human infection is the heterogeneity in behavioral patters adopted by the host population. Beyond control measures imposed by public authorities, human behavioral changes can be triggered by uncoordinated responses driven by the diffusion of fear in the general population or by the risk perception.
In order to assess how and when behavioral changes can affect the spread of an epidemic, spontaneous social distancing - e.g. produced by avoiding crowded environments, using face masks or limiting travels - is investigated. Moreover, in order to assess whether vaccine preventable diseases can be eliminated through not compulsory vaccination programs, vaccination choices are investigated as well.
The proposed models are based on an evolutionary game theory framework. Considering dynamical games allows explicitly modeling the coupled dynamics of disease transmission and human behavioral changes. Specifically, the information diffusion is modeled through an imitation process in which the convenience of different behaviors depends on the perceived risk of infection and vaccine side effects. The proposed models allow the investigation of the effects of misperception of risks induced by partial, delayed or incorrect information (either concerning the state of the epidemic or vaccine side effects) as well.
The performed investigation highlights that a small reduction in the number of potentially infectious contacts in response to an epidemic and an initial misperception of the risk of infection can remarkably affect the spread of infection. On the other hand, the analysis of vaccination choices showed that concerns about proclaimed risks of vaccine side effects can result in widespread refusal of vaccination which in turn leads to drops in vaccine uptake and suboptimal vaccination coverage.
|
17 |
Intrinsic Differentiability and Intrinsic Regular Surfaces in Carnot groupsDi Donato, Daniela January 2017 (has links)
The main object of our research is the notion of "intrinsic regular surfaces" introduced and studied by Franchi, Serapioni, Serra Cassano in a Carnot group G. More precisely, an intrinsic regular hypersurface (i.e. a topological codimension 1 surface) S is a subset of G which is locally defined as a non critical level set of a C^1 intrinsic function. In a similar way, a k-codimensional intrinsic regular surface is locally defined as a non critical level set of a C^1 intrinsic vector function. Through Implicit Function Theorem, S can be locally represented as an intrinsic graph by a function phi. Here the intrinsic graph is defined as follows: let V and W be complementary subgroups of G, then the intrinsic graph of phi defined from W to V is the set { A \cdot phi(A) | A belongs to W}, where \cdot indicates the group operation in G. A fine characterization of intrinsic regular surfaces in Heisenberg groups (examples of Carnot groups) as suitable 1-codimensional intrinsic graphs has been established in [1]. We extend this result in a general Carnot group introducing an appropriate notion of differentiability, denoted uniformly intrinsic differentiability, for maps acting between complementary subgroups of G. Finally we provide a characterization of intrinsic regular surfaces in terms of existence and continuity of suitable "derivatives" of phi introduced by Serra Cassano et al. in the context of Heisenberg groups. All the results have been obtained in collaboration with Serapioni. [1] L.Ambrosio, F. Serra Cassano, D. Vittone, \emph{Intrinsic regular hypersurfaces in Heisenberg groups}, J. Geom. Anal. 16, (2006), 187-232.
|
18 |
Intrinsic Lipschitz graphs in Heisenberg groups and non linear sub-elliptic PDEsPinamonti, Andrea January 2011 (has links)
In this thesis we study intrinsic Lipschitz functions. In particular we provide a regular approximation result and a Poincarè type inequality for this class of functions. Moreover we study the obstacle problem in the Heisenberg group and we prove a geometric Poincarè inequality for a class of semilinear equations in the Engel group.
|
19 |
Topics in the geometry of non Riemannian lie groupsNicolussi Golo, Sebastiano January 2017 (has links)
This dissertation consists of an introduction and four papers. The papers deal with several problems of non-Riemannian metric spaces, such as sub-Riemannian Carnot groups and homogeneous metric spaces. The research has been carried out between the University of Trento (Italy) and the University of Jyväskylä (Finland) under the supervision of prof. F. Serra Cassano and E. Le Donne, respectively. In the following we present the abstracts of the four papers.
1) REGULARITY PROPERTIES OF SPHERES IN HOMOGENEOUS GROUPS
E. Le Donne AND S. Nicolussi Golo
We study left-invariant distances on Lie groups for which there exists a one-parameter family of homothetic automorphisms. The main examples are Carnot groups, in particular the Heisenberg group with the standard dilations. We are interested in criteria implying that, locally and away from the diagonal, the distance is Euclidean Lipschitz and, consequently, that the metric spheres are boundaries of Lipschitz domains in the Euclidean sense. In the first part of the paper, we consider geodesic distances. In this case, we actually prove the regularity of the distance in the more general context of sub-Finsler manifolds with no abnormal geodesics. Secondly, for general groups we identify an algebraic criterium in terms of the dilating automorphisms, which for example makes us conclude the regularity of every homogeneous distance on the Heisenberg group. In such a group, we analyze in more details the geometry of metric spheres. We also provide examples of homogeneous groups where spheres present cusps.
2) ASYMPTOTIC BEHAVIOR OF THE RIEMANNIAN HEISENBERG GROUP AND ITS HOROBOUNDARY
E. Le Donne, S. Nicolussi Golo, AND A. Sambusetti
The paper is devoted to the large scale geometry of the Heisenberg group H equipped with left-invariant Riemannian metrics. We prove that two such metrics have bounded difference if and only if they are asymptotic, i.e., their ratio goes to one, at infinity. Moreover, we show that for every left-invariant Riemannian metric d on H there is a unique sub-Riemanniann metric d' for which d − d' goes to zero at infinity, and we estimate the rate of convergence. As a first immediate consequence we get that the Riemannian Heisenberg group is at bounded distance from its asymptotic cone. The second consequence, which was our aim, is the explicit description of the horoboundary of the Riemannian Heisenberg group.
3) FROM HOMOGENEOUS METRIC SPACES TO LIE GROUPS
M. G. Cowling, V. Kivioja, E. Le Donne, S. Nicolussi Golo, AND A. Ottazzi
We study connected, locally compact metric spaces with transitive isometry groups. For all $\epsilon\in R_+$, each such space is $(1,\epsilon)$- quasi-isometric to a Lie group equipped with a left-invariant metric. Further, every metric Lie group is $(1,C)$-quasi-isometric to a solvable Lie group, and every simply connected metric Lie group is $(1,C)$-quasi-isometrically homeomorphic to a solvable-by-compact metric Lie group. While any contractible Lie group may be made isometric to a solvable group, only those that are solvable and of type (R) may be made isometric to a nilpotent Lie group, in which case the nilpotent group is the nilshadow of the group. Finally, we give a complete metric characterisation of metric Lie groups for which there exists an automorphic dilation. These coincide with the metric spaces that are locally compact, connected, homogeneous, and admit a metric dilation.
4) SOME REMARKS ON CONTACT VARIATIONS IN THE FIRST HEISENBERG GROUP
S. Nicolussi Golo
We show that in the first sub-Riemannian Heisenberg group there are intrinsic graphs of smooth functions that are both critical and stable points of the sub-Riemannian perimeter under compactly supported variations of contact diffeomorphisms, despite the fact that they are not area-minimizing surfaces. In particular, we show that if $f : R^2 \rightarrow R^2$ is a $C^1$-intrinsic function, and $\nabla^f\nabla^ff = 0$, then the first contact variation of the sub-Riemannian area of its intrinsic graph is zero and the second contact variation is positive.
|
20 |
Existence, Uniqueness, Optimization and Stability for low Eigenvalues of some Nonlinear OperatorsFranzina, Giovanni January 2012 (has links)
The thesis surveys some recent results obtained in the field of nonlinear partial differential equations and calculus of variations about eigenvalues of nonlinear operators.
|
Page generated in 0.1118 seconds