31 |
Powder processing of oxide dispersion strengthened steels for nuclear applicationsGorley, Michael January 2014 (has links)
Ferritic ODS steels show improved high temperature strength and irradiation tolerance compared with conventional ferritic steels, and are one of the key potential materials for fusion blanket structural applications. The processing of ODS steels is critical to their subsequent performance; however knowledge of the optimum processing approaches for these alloys is not complete. The microstructural evolution of ODS steels containing Y<sub>2</sub>O<sub>3</sub> and other additions during manufacture has been investigated and the processing conditions optimised based on microstructural and mechanical investigations. Ferritic powders with Y<sub>2</sub>O<sub>3</sub> and other additions were investigated, primarily using analysis on the micro- and nano-scale, with an emphasis on identifying the requirements for homogenization of the Y within the steel matrix. The Y<sub>2</sub>O<sub>3</sub> dispersion and subsequent development of the nano-precipitates during thermal treatment was investigated using in-situ neutron diffraction. The nano-precipitates were resolved at approximately 900◦C after 1hr, with coarsening and/or re-precipitation progressively increasing at higher temperatures. A significantly increased number density of nano-precipitates (∼2x10<sup>23</sup>m−3 to ∼7x10<sup>23</sup>m−3) was established by hot isostatically pressing an Fe-14Cr-3W-0.2Ti0.25Y<sub>2</sub>O<sub>3</sub> alloy at 950◦C compared with more traditional temperatures at 1150◦C, attributed to the increased coarsening and/or re-precipitation of the nano-precipitates at the higher temperatures. The influence of the mechanical alloy (MA)ing conditions on bulk mechanical properties was investigated using four point bend. The highest fracture toughness of ∼55MN/m<sup>3/2</sup> and ultimate strength of ∼1450MPa was achieved under conditions that minimised the mechanical alloying time and increased the average final size of the powders. An Fe-14Cr-3W-0.2Ti-0.25Y<sub>2</sub>O<sub>3</sub> (wt%) ODS alloy manufactured under optimised conditions showed a bi-modal grain structure size distribution and had a comparatively high yield strength of >1200MPa at 20◦C and >330MPa at 700◦C. The grain structure and high yield strength were attributed to the random distribution of 25nm radius of gyration (R<sub>g</sub>) Y, Ti and O rich nano-precipitates randomly dispersed throughout the alloy. Long term thermal ageing (750hr at 1000◦C) reduced the room temperature yield strength and increased the proportion of larger grains in the bi-modal distribution, but high temperature yield strength was remarkably stable.
|
32 |
Extrusion processing of chocolate crumb pasteWalker, Alasdair Michael January 2012 (has links)
This project considers the co-rotating twin screw extrusion of a confectionery paste comprising powdered proteins, sugars, water and fats. As is the case with many food industry products, this process has been developed experimentally with little quantitative understanding of how variations in processing conditions influence the formation of the extrudate. A variety of techniques have therefore been developed to characterise and quantify the dispersive mixing, distributive mixing and rheological flow properties of this complex, multiphase, viscoelastic, unstable material. These techniques have then been utilised in a pilot plant extruder study of the mechanics of mixing and paste formation during extrusion, considering the influence of both processing conditions and screw profile. The internal evolution of paste microstructure has been successfully tracked along the length of screw profile using dead-stop extractions of the screws. A rigorous off-line assessment of shear yield strength behaviour using cone penetrometry has shown the use of conventional off-line rheometers to be unviable due to rapid post extrusion hardening. This highlighted the need for an in-line rheological measurement technique for continuous extrusion analysis where the extruded material is severely time dependent and not extractable. In pursuit of this, a novel arrangement of bender elements is proposed and trialled, to rapidly characterise material parameters of viscoelastic pastes. A second technique looking to extend the application of shear wave interface reflection to multiphase pastes is also trialled. A novel analysis of thermogravimetric data (TGA) has generated a viable index of distributive mixing, suitable for use on complex multi-component materials where thermal decomposition temperatures of the components are not well defined. Quantitative image analysis of pastes using scanning electron microscopy (SEM), optical microscopy protein staining and a novel application of multiphoton microscopy (MPM) have been used to visualise paste microstructure and quantify dispersive mixing. From the pilot plant extruder study, the application of these techniques was successful in mapping the evolution of paste mixing and the resulting microstructure, as well as identifying key differences between pastes mixed by twin screw extrusion and batch mixing.
|
33 |
The irradiation resistance of oxide dispersion strengthened steelsBurrows, Christopher John January 2015 (has links)
Reduced activation oxide dispersion strengthened (ODS) steels are candidate alloys for use in fusion reactor systems and are fabricated by mechanically alloying yttrium oxide to a reduced activation ferritic steel powder. The product is consolidated at high temperature by hot isostatic pressing (HIP), producing a dispersion of nanometre sized oxide particles throughout the ferritic microstructure. These particles have been shown to both improve the high temperature mechanical properties of the alloy and provide trapping sites for helium gas. The use of these particles to sequester helium is of particular significance in the development of a structural ODS steel for fusion reactor systems. A fusion power reactor, based on the ITER design, is expected to produce over 2000 appm transmutant helium in any steel components exposed to the core neutron flux. At these gas concentrations, conventional steels undergo severe swelling and embrittlement, motivating the development of materials capable of managing helium accumulation. This thesis investigates the use of the oxide particle dispersion in sequestering helium introduced by ion implantation. An initial characterisation of a model Fe-14Cr-0.25Y<sub>2</sub>O<sub>3</sub> (wt%) system was completed using high resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT). This demonstrated the efficacy of the production methods and the gas trapping capabilities of the oxide particles via argon gas, introduced during the mechanical alloying process. The subsequent consolidation of a full set of Fe-14Cr-3W-0.2Ti-0.25Y<sub>2</sub>O<sub>3</sub> (wt%) ODS alloys at 1150°C, 1050 °C and 950 °C produced a systematic variation in the density of the particle dispersion. The characterisation of these materials using APT provided an insight into the consistent Y<sub>2</sub>Ti<sub>3</sub>O<sub>5</sub> particle chemistry found in each consolidation, and identified a stoichiometric shift from Y<sub>2</sub>Ti<sub>3</sub>O<sub>5</sub> to YTiO2 following short term annealing periods at 1000°C. Though further work is required, this shift is thought to be consistent with a thermodynamically mediated transition of the metastable clusters to stable oxide particles. Following implantation with 2000 appm helium and examination under TEM, the helium bubble and particle densities were found to be closely correlated thus providing evidence for an association between the particles and the gas bubbles. Controlling the helium bubble density via the particle dispersion demonstrates the potential use of processing temperature in controlling how helium accumulates in an implanted ODS microstructure. The effects of both bubble and particle densities on mechanical properties were investigated further using nanoindentation methods. Significant local variation in the hardness of the ODS steels was found to result from the bimodal grain size distribution of the material. By using only those measurements taken from large grained regions of the ODS, the grain refinement and particle hardening effects could be deconvolved and used to quantify particle hardening using a dispersed barrier model. The significant hardening effects with helium addition observed in the reference alloys were found to be almost entirely absent from the ODS systems, though anomalous softening in the 950°C consolidation indicated a potentially unexpected interaction between the bubble and particle populations. A possible explanation for this anomaly and a proposal for further work to establish its origin is discussed.
|
34 |
'Hybrid' non-destructive imaging techniques for engineering materials applicationsBaimpas, Nikolaos January 2014 (has links)
The combination of X-ray imaging and diffraction techniques provides a unique tool for structural and mechanical analysis of engineering components. A variety of modes can be employed in terms of the spatial resolution (length-scale), time resolution (frequency), and the nature of the physical quantity being interrogated. This thesis describes my contributions towards the development of novel X-ray “rich” imaging experimental techniques and data interpretation. The experimental findings have been validated via comparison with other experimental methods and numerical modelling. The combination of fast acquisition rate and high penetration properties of X-ray beams allows the collection of high-resolution 3-D tomographic data sets at submicron resolution during in situ deformation experiments. Digital Volume Correlation analysis tools developed in this study help understand crack propagation mechanisms in quasi-brittle materials and elasto-plastic deformation in co-sprayed composites. For the cases of crystalline specimens where the knowledge of “live” or residual elastic strain distributions is required, diffraction techniques have been advanced. Diffraction Strain Tomography (DST) allows non-destructive reconstruction of the 2-D (in-plane) variation of the out-of-plane strain component. Another diffraction modality dubbed Laue Orientation Tomography (LOT), a grain mapping approach has been proposed and developed based on the translate-rotate tomographic acquisition strategy. It allows the reconstruction of grain shape and orientation within polycrystalline samples, and provides information about intragranular lattice strain and distortion. The implications of this method have been thoroughly investigated. State-of-the-art engineering characterisation techniques evolve towards scrutinising submicron scale structural features and strain variation using the complementarity of X-ray imaging and diffraction. The first successful feasibility study is reported of in operando stress analysis in an internal combustion engine. Finally, further advancement of ‘rich’ imaging techniques is illustrated via the first successful application of Time-of-Flight Neutron Diffraction Strain (TOF-NDST) tomography for non-destructive reconstruction of the complete strain tensor using an inverse eigenstrain formulation.
|
35 |
Ultrafast carrier dynamics in organic-inorganic semiconductor nanostructuresYong, Chaw Keong January 2012 (has links)
This thesis is concerned with the influence of nanoscale boundaries and interfaces upon the electronic processes that occur within the inorganic semiconductors. Inorganic semiconductor nanowires and their blends with semiconducting polymers have been investigated using state-of-the-art ultrafast optical techniques to provide information on the sub-picosecond to nanosecond photoexcitation dynamics in these systems. Chapters 1 and 2 introduce the theory and background behind the work and present a literature review of previous work utilising nanowires in hybrid organic photovoltaic devices, revealing the performances to date. The experimental methods used during the thesis are detailed in Chapter 3. Chapter 4 describes the crucial roles of surface passivation on the ultrafast dynamics of exciton formation in gallium arsenide (GaAs) nanowires. By passivating the surface states of nanowires, exciton formation via the bimolecular conversion of electron-hole plasma can observed over few hundred picoseconds, in-contrast to the fast carrier trapping in 10 ps observed in the uncoated nanowires. Chapter 5 presents a novel method to passivate the surface-states of GaAs nanowires using semiconducting polymer. The carrier lifetime in the nanowires can be strongly enhanced when the ionization potential of the overcoated semiconducting polymer is smaller than the work function of the nanowires and the surface native oxide layers of nanowires are removed. Finally, Chapter 6 shows that the carrier cooling in the type-II wurtzite-zincblend InP nanowires is reduced by order-of magnitude during the spatial charge-transfer across the type-II heterojunction. The works decribed in this thesis reveals the crucial role of surface-states and bulk defects on the carrier dynamics of semiconductor nanowires. In-addition, a novel approach to passivate the surface defect states of nanowires using semiconducting polymers was developed.
|
36 |
Towards large area single crystalline two dimensional atomic crystals for nanotechnology applicationsWu, Yimin A. January 2012 (has links)
Nanomaterials have attracted great interest due to the unique physical properties and great potential in the applications of nanoscale devices. Two dimensional atomic crystals, which are atomic thickness, especially graphene, have triggered the gold rush recently due to the fascinating high mobility at room temperature for future electronics. The crystal structure of nanomaterials will have great influence on their physical properties. Thus, this thesis is focused on developing the methods to control the crystal structure of nanomaterials, namely quantum dots as semiconductor, boron nitride (BN) as insulator, graphene as semimetal, with low cost for their applications in photonics, structural support and electronics. In this thesis, firstly, Mn doped ZnSe quantum dots have been synthesized using colloidal synthesis. The shape control of Mn doped ZnSe quantum dots has been achieved from branched to spherical by switching the injection temperature from kinetics to thermodynamics region. Injection rates have been found to have effect on controlling the crystal phase from zinc blende to wurtzite. The structural-property relationship has been investigated. It is found that the spherical wurtzite Mn doped ZnSe quantum dots have the highest quantum yield comparing with other shape or crystal phase of the dots. Then, the Mn doped ZnSe quantum dots were deposited onto the BN sheets, which were micron-sized and fabricated by chemical exfoliation, for high resolution imaging. It is the first demonstration of utilizing ultrathin carbon free 2D atomic crystal as support for high resolution imaging. Phase contrast images reveal moiré interference patterns between nanocrystals and BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes using a newly developed equation method. Double diffraction is observed and has been analyzed using a vector method. As only a few microns sized 2D atomic crystal, like BN, can be fabricated by the chemical exfoliation. Chemical vapour deposition (CVD) is as used as an alternative to fabricate large area graphene. The mechanism and growth dynamics of graphene domains have been investigated using Cu catalyzed atmospheric pressure CVD. Rectangular few layer graphene domains were synthesized for the first time. It only grows on the Cu grains with (111) orientation due to the interplay between atomic structure of Cu lattice and graphene domains. Hexagonal graphene domains can form on nearly all non-(111) Cu surfaces. The few layer hexagonal single crystal graphene domains were aligned in their crystallographic orientation over millimetre scale. In order to improve the alignment and reduce the layer of graphene domains, a novel method is invented to perform the CVD reaction above the melting point of copper (1090 ºC) and using molybdenum or tungsten to prevent the balling of the copper from dewetting. By controlling the amount of hydrogen during the growth, individual single crystal domains of monolayer over 200 µm are produced determined by electron diffraction mapping. Raman mapping shows the monolayer nature of graphene grown by this method. This graphene exhibits a linear dispersion relationship and no sign of doping. The large scale alignment of monolayer hexagonal graphene domains with epitaxial relationship on Cu is the key to get wafer-sized single crystal monolayer graphene films. This paves the way for industry scale production of 2D single crystal graphene.
|
Page generated in 0.0246 seconds