• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micro-réarrangements chromosomiques et déficience intellectuelle : identification de nouveaux gènes et caractérisation des conséquences moléculaires de ces micro-réarrangements sur les gènes cibles / Chromosomal aberrations and intellectual disability (ID) : identification of new ID genes and molecular outcomes of these aberrations

Bonnet, Céline 12 December 2012 (has links)
De nombreux gènes impliqués dans la déficience intellectuelle (DI) restent encore à découvrir. Une des voies permettant l'identification de ces nouveaux gènes est la caractérisation de micro-réarrangements chromosomiques chez des patients atteints de DI. L'hybridation génomique comparative sur microréseau permet de détecter des déséquilibres génomiques de très petite taille touchant un ou quelques gènes. Les conséquences moléculaires de ces microdélétions ou microduplications sont différentes en fonction de la position du gène par rapport à leurs bornes. Nous avons ainsi montré l'implication du gène MBD5 dans le syndrome microdélétionnel 2q23.1 et la DI grâce à la caractérisation de trois délétions partielles, une duplication partielle et la première mutation non sens décrite dans ce gène. Nous avons également décrit chez des patients avec DI sévère un nouveau syndrome associé aux délétions de la région 4q21 et deux gènes candidats : PRKG2 et RASGEF1B. Ce syndrome est associé à un phénotype clinique reconnaissable, marqué surtout par un retard de croissance majeur et un retard psychomoteur sévère prédominant sur le langage. Par ailleurs nous avons étudié chez des garçons avec DI, deux duplications situées en Xq24q25 affectant le gène GRIA3. La première touche partiellement le gène, la seconde est situé en amont du gène et est responsable d'un effet de position. Pour finir nous avons étudié une famille consanguine dans laquelle ségrége une duplication 8p22 touchant partiellement le gène TUSC3 impliqué dans la DI de transmission autosomique récessive / A lot of intellectual disability (ID) genes have to be discovered. One of the approaches to identify new ID genes is to characterize chromosomal aberrations in affected patients. Array-CGH (Comparative Genomic Hybridization) made it possible to detect small CNV (Copy Number Variations) affecting only one or a few genes. Molecular outcomes of these microdeletions and microduplications are different depending on the position of the gene relative to the breakpoints. We have thus shown the involvement of MBD5 gene in the 2q23.1 microdeletion syndrome and in ID with the characterization of three partial deletions, a partial duplication and the first nonsense mutation described in this gene. We have also described in patients with severe ID a new syndrome associated with 4q21 deletions involving two candidate genes: PRKG2 and RASGEF1B. This syndrome is associated with a recognizable clinical phenotype with marked growth restriction, severe psychomotor delay and absent or severely delayed speech. In addition, we have studied two Xq24q25 duplications affecting GRIA3 gene in boys with ID. The first one affects partially the gene, the second one is located upstream of the gene and is responsible for a position effect. Finally we have studied a consanguineous family with a 8p22 duplication affecting partially TUSC3 gene which is involved in autosomal recessive ID
2

Uncovering the molecular pathways of MBD5 in neurodevelopmental disorders

Mullegama, Sureni 15 March 2013 (has links)
Neurodevelopmental disorders (NDs) are a growing public health concern. These complex disorders cause failure of normal brain development, which leads to intellectual disability (ID) or autism in 3% of children. Accurate diagnosis of NDs is difficult due to complex overlapping phenotypes. Moreover, associations between phenotypically similar NDs and their overlapping molecular mechanisms remain unidentified. The chromosome 2q23.1 region is a newly discovered disease region. We have recently identified a novel ND, 2q23.1 deletion syndrome. The phenotype includes severe ID, significantly delayed speech, behavioral problems, seizures and short stature. This syndrome shares characteristics in common with other genetic syndromes, including Smith-Magenis (SMS, RAI1), Pitt-Hopkins (PTH, TCF4), Angelman (AS, UBE3A) and Rett (RTT, MECP2) syndromes, including ID, speech impairment, and seizures, in addition to other autism spectrum disorder (ASD)-associated phenotypes (associated with mutation of MBD1). The methyl-CpG binding domain protein 5 (MBD5) is thought to be the causative gene for the core phenotype seen in del2q23. We propose that MBD5 is a dosage dependent gene, wherein deletion or duplication results in two distinct syndromes. We hypothesize that deletions, mutations, and duplications in MBD5 and its associated overlapping gene networks are responsible for causing the phenotype seen in 2q23.1 disorders. Furthermore, we hypothesize that syndromic neurodevelopmental genes are involved in common biological networks that, when dysregulated, result in the overlapping phenotypes present in many of these neurodevelopmental disorders. We first show that the causative gene for 2q23.1 deletion syndrome is MBD5. We established a consortium of clinical diagnostic and research laboratories to accumulate a large cohort with genetic alterations of chromosome 2q23.1, acquiring 65 subjects with microdeletion or translocation. We sequenced translocation breakpoints, aligned microdeletions to determine the critical region, assessed effects on mRNA expression, and examined medical records, photos, and clinical evaluations. We identified MBD5 as the only locus that defined the critical region. Partial or complete deletion of MBD5 was associated with haploinsufficiency, intellectual disability, epilepsy, and autistic features. Sixteen alterations disrupted MBD5 alone, including partial deletions of noncoding regions not typically captured or considered pathogenic by current diagnostic screening. Expression profiles and clinical characteristics were largely indistinguishable between MBD5-specific alteration and deletion of the entire 2q23.1 interval. We surveyed MBD5 coding polymorphisms among 747 ASD subjects compared to 2,043 non-ASD subjects analyzed by whole-exome sequencing and detected an association with a highly conserved methyl-CpG binding domain missense variant, G79E (p=0.012). Thus, we establish that haploinsufficiency of MBD5 is the primary causal factor in 2q23.1 microdeletion syndrome and that mutations in MBD5 are associated with autism. Secondly, we show that MBD5 is a dosage dependent region, wherein deletion or duplication results in altered gene dosage. We previously established the 2q23.1 microdeletion syndrome and report herein 23 individuals with 2q23.1 duplications, thus establishing a complementary duplication syndrome. The observed phenotype includes intellectual disability, motor delay, language impairments, infantile hypotonia and gross motor delay, behavioral problems, autistic features, dysmorphic facial features (pinnae anomalies, arched eyebrows, prominent nose, small chin, thin upper lip), and minor digital anomalies (fifth finger clinodactyly and large broad first toe). The microduplication size varies among all cases and ranges from 680 kb to 53.7 Mb, encompassing a region that includes MBD5. Phenotypic analyses suggest that 2q23.1 duplication results in a slightly less severe phenotype than the reciprocal deletion. The features associated with a deletion, mutation, or duplication of MBD5 and the gene expression changes observed support MBD5 as a dosage sensitive gene critical for normal development. Dup(2)(q23.1) causes a phenotype similar to del(2)(q23.1) and other NDs, like SMS and autism, suggesting shared molecular pathways. Finally, chromatin-modifying genes play an important role in the genetic etiology of many NDs, including intellectual disability, epilepsy, and autism. Many monogenic NDs are caused by chromatin modifying genes, including 2q23.1 deletion and duplication, SMS, RTT, AS, fragile X syndrome (FXS), and PTH. Many of these disorders have overlapping features that include language, sleep, and behavioral anomalies. Investigation of relative gene expression by quantitative PCR and microarray of cell lines from individuals with disorders due to altered expression of MBD5, RAI1, MECP2, UBE3A, TCF4, and MBD1 revealed molecular signatures that allowed for the generation of a novel neurodevelopmental molecular network supporting the overlapping features across these syndromes. Further, knockdown of MBD5 and RAI1 in SH-SY5Y and HEK293T cell lines expanded the repertoire of genes involved in these pathways and showed that other chromatin modifying genes, as well as developmental genes are dysregulated. Pathway analyses showed that MBD5 and RAI1 function in chromatin remodeling, circadian rhythm, neuronal development, and cell growth/survival pathways. From these studies, precise gene dosage of chromatin modifying genes, such as RAI1 and MBD5 are clearly a requirement for normal neurodevelopment and function. Taken together, these studies have given us insight into the role of MBD5 as a dosage sensitive gene in two NDs. Furthermore, we gained insight of how dosage effects of MBD5 and RAI1 affect molecular pathways that are linked to neuronal and behavioral development. We have unveiled pathways and genes, which are important to normal human development, neurodevelopment and behavior. These findings support further investigations into the relationships among causative neurodevelopmental genes, which will lead to common points of regulation that may be targeted toward therapeutic intervention.

Page generated in 0.0268 seconds