1 |
Modelagem pelo método de Monte Carlo do paciente e das complexidades dos tratamentos braquiterápicos com alta taxa de dose / Monte Carlo modelling of the patient and treatment delivery complexities for high dose rate brachytherapyFonseca, Gabriel Paiva 15 October 2015 (has links)
Tratamentos braquiterápicos são comumente realizados conforme o relatório da American Association of Physicists in Medicine (AAPM), Task Group report TG-43U1, o qual define o formalismo para cálculo de dose absorvida na água e não considera a composição dos materiais, densidades, dimensões do paciente e o efeito dos aplicadores. Estes efeitos podem ser significantes, conforme descrito pelo recente relatório da AAPM, Task Group report TG- 186, que define diretrizes para que sistemas de planejamento modernos, capazes de considerar as complexidades descritas acima, sejam implementados. Esta tese tem como objetivo contribuir para o aumento da exatidão dos planejamentos de tratamento braquiterápicos, seguindo as recomendações do TG-186 e indo além do mesmo. Um software foi desenvolvido para integrar planejamentos de tratamento e simulações pelo método de Monte Carlo (MC); modelos acurados, CAD-Mesh, foram utilizados para representar aplicadores braquiterápicos; Grandezas utilizadas para reportar dose absorvida, Dw,m (dose para água no meio) e Dm,m (dose para o meio no meio), foram calculadas para um tratamento de cabeça e pescoço, considerando a teoria para pequenas (SCT small cavity theory) e grandes cavidades (LCT large cavity theory); a componente da dose em razão do movimento da fonte foi avaliada para tratamentos de próstata e ginecológicos. Perfis de velocidade obtidos na literatura foram utilizados; medidas de velocidade de uma fonte braquiterapica foram realizadas com uma câmera de alta taxa de aquisição. Cálculos de dose obtidos usando MC (incluindo a composição e densidade dos tecidos, ar e o aplicador) mostram sobredoses de aproximadamente 5% dentro do volume alvo, em um tratamento ginecológico, quando comparados aos resultados obtidos com um meio homogêneo de água. Por sua vez, subdoses de aproximadamente 5% foram observadas ao considerar a composição dos tecidos e regiões com ar em um tratamento intersticial de braço. Um aplicador cilíndrico oco resultou na sobredose observada no caso ginecológico, ressaltando a necessidade de modelos acurados para representar os aplicadores. Os modelos CAD-Mesh utilizados incluem um aplicador Fletcher-Williamson, com blindagem, e um balão deformável para irradiação de mama. Os resultados obtidos com estes modelos são equivalentes aos obtidos com modelos geométricos convencionais. Este recurso pode ser conveniente para aplicadores complexos e/ou quando o projeto dos aplicadores for disponibilizado pelo fabricante. Cálculos de dose, com a composição real dos tecidos humanos, podem apresentar diferenças significativas em razão da grandeza adotada. Diferenças entre Dm,m e Dw,m (SCT ou LCT) chegam a 14% em razão da composição do osso. A metodologia adotada (SCT ou LCT) resulta em diferenças de até 28% para o osso e 36% para os dentes. A componente de dose de trânsito também pode levar a diferenças significativas, uma vez que baixas velocidades ou movimentos uniformemente acelerados foram descritos na literatura. Considerando a pior condição e sem incluir nenhuma correção no tempo de parada, a dose de trânsito pode chegar a 3% da dose prescrita para um caso ginecológico, com 4 cateteres, e até 11.1% da dose prescrita para um tratamento de próstata, com 16 cateteres. A dose de trânsito para a fonte avaliada (velocidade obtida experimentalmente) não é uniformemente distribuída e pode levar a sub ou sobredoses de até 1.4% das doses comumente prescritas (310 Gy). Os tópicos estudados são relevantes para tratamentos braquiterápicos e podem contribuir para o aumento de sua acurácia. Os efeitos estudados podem ser avaliados com o uso do software, associado a um código MC, desenvolvido. / Brachytherapy treatments are commonly performed using the American Association of Physicists in Medicine (AAPM) Task Group report TG-43U1 absorbed dose to water formalism, which neglects human tissue densities, material compositions, body interfaces, body shape and dose perturbations from applicators. The significance of these effects has been described by the AAPM Task Group report TG-186 in published guidelines towards the implementation of Treatment Planning Systems (TPS) which can take into account the above mentioned complexities. This departure from the water kernel based dose calculation approach requires relevant scientific efforts in several fields. This thesis aims to improve brachytherapy treatment planning accuracy following TG-186 recommendations and going beyond it. A software has been developed to integrate clinical treatment plans with Monte Carlo (MC) simulations; high fidelity CAD-Mesh geometry was employed to improve brachytherapy applicators modelling; different dose report quantities, Dw,m (dose to water in medium) and Dm,m (dose to medium in medium), were obtained for a head and neck case using small cavity theory (SCT) and large cavity theory (LCT); the dose component due to the source moving within the patient was evaluated for gynecological and prostate clinical cases using speed profiles from the literature. Moreover, source speed measurements were performed using a high speed camera. Dose calculations using MC showed overdosing around 5% within the target volume for a gynecological case comparing results obtained including tissue, air and applicator effects against a homogeneous water phantom. On the other hand, the same comparison showed underdosing around 5% when including tissue and air composition for an interstitial arm case. A hollow cylinder applicator was responsible for the overdosing observed for the gynecological case highlighting the importance of accurate applicator modelling. The evaluated CAD-Mesh applicators models included a Fletcher- Williamson shielded applicator and a deformable balloon used for accelerated partial breast irradiation. Results obtained were equivalent to ones obtained with conventional constructive solid geometry and may be convenient for complex applicators and/or when manufacturer CAD models are available. Differences between Dm,m and Dw,m (SCT or LCT) are up to 14% for bone in a evaluated head and neck case. The approach (SCT or LCT) leads to differences up to 28% for bone and 36% for teeth. Differences can also be significant due to the source movement since some speed profiles from literature show low source speeds or uniform accelerated movements. Considering the worst case scenario and without include any dwell time correction, the transit dose can reach 3% of the prescribed dose in a gynecological case with 4 catheters and up to 11.1% when comparing the average prostate dose for a case with 16 catheters. The transit dose for a high speed (measured with a video camera) source is not uniformly distributed leading to over and underdosing, which is within 1.4% for commonly prescribed doses (310 Gy). The main subjects evaluated in this thesis are relevant for brachytherapy treatment planning and can improve treatment accuracy. Many of the issues described in here can be assessed with the software, coupled with a MC code, developed in this work.
|
2 |
Modelagem pelo método de Monte Carlo do paciente e das complexidades dos tratamentos braquiterápicos com alta taxa de dose / Monte Carlo modelling of the patient and treatment delivery complexities for high dose rate brachytherapyGabriel Paiva Fonseca 15 October 2015 (has links)
Tratamentos braquiterápicos são comumente realizados conforme o relatório da American Association of Physicists in Medicine (AAPM), Task Group report TG-43U1, o qual define o formalismo para cálculo de dose absorvida na água e não considera a composição dos materiais, densidades, dimensões do paciente e o efeito dos aplicadores. Estes efeitos podem ser significantes, conforme descrito pelo recente relatório da AAPM, Task Group report TG- 186, que define diretrizes para que sistemas de planejamento modernos, capazes de considerar as complexidades descritas acima, sejam implementados. Esta tese tem como objetivo contribuir para o aumento da exatidão dos planejamentos de tratamento braquiterápicos, seguindo as recomendações do TG-186 e indo além do mesmo. Um software foi desenvolvido para integrar planejamentos de tratamento e simulações pelo método de Monte Carlo (MC); modelos acurados, CAD-Mesh, foram utilizados para representar aplicadores braquiterápicos; Grandezas utilizadas para reportar dose absorvida, Dw,m (dose para água no meio) e Dm,m (dose para o meio no meio), foram calculadas para um tratamento de cabeça e pescoço, considerando a teoria para pequenas (SCT small cavity theory) e grandes cavidades (LCT large cavity theory); a componente da dose em razão do movimento da fonte foi avaliada para tratamentos de próstata e ginecológicos. Perfis de velocidade obtidos na literatura foram utilizados; medidas de velocidade de uma fonte braquiterapica foram realizadas com uma câmera de alta taxa de aquisição. Cálculos de dose obtidos usando MC (incluindo a composição e densidade dos tecidos, ar e o aplicador) mostram sobredoses de aproximadamente 5% dentro do volume alvo, em um tratamento ginecológico, quando comparados aos resultados obtidos com um meio homogêneo de água. Por sua vez, subdoses de aproximadamente 5% foram observadas ao considerar a composição dos tecidos e regiões com ar em um tratamento intersticial de braço. Um aplicador cilíndrico oco resultou na sobredose observada no caso ginecológico, ressaltando a necessidade de modelos acurados para representar os aplicadores. Os modelos CAD-Mesh utilizados incluem um aplicador Fletcher-Williamson, com blindagem, e um balão deformável para irradiação de mama. Os resultados obtidos com estes modelos são equivalentes aos obtidos com modelos geométricos convencionais. Este recurso pode ser conveniente para aplicadores complexos e/ou quando o projeto dos aplicadores for disponibilizado pelo fabricante. Cálculos de dose, com a composição real dos tecidos humanos, podem apresentar diferenças significativas em razão da grandeza adotada. Diferenças entre Dm,m e Dw,m (SCT ou LCT) chegam a 14% em razão da composição do osso. A metodologia adotada (SCT ou LCT) resulta em diferenças de até 28% para o osso e 36% para os dentes. A componente de dose de trânsito também pode levar a diferenças significativas, uma vez que baixas velocidades ou movimentos uniformemente acelerados foram descritos na literatura. Considerando a pior condição e sem incluir nenhuma correção no tempo de parada, a dose de trânsito pode chegar a 3% da dose prescrita para um caso ginecológico, com 4 cateteres, e até 11.1% da dose prescrita para um tratamento de próstata, com 16 cateteres. A dose de trânsito para a fonte avaliada (velocidade obtida experimentalmente) não é uniformemente distribuída e pode levar a sub ou sobredoses de até 1.4% das doses comumente prescritas (310 Gy). Os tópicos estudados são relevantes para tratamentos braquiterápicos e podem contribuir para o aumento de sua acurácia. Os efeitos estudados podem ser avaliados com o uso do software, associado a um código MC, desenvolvido. / Brachytherapy treatments are commonly performed using the American Association of Physicists in Medicine (AAPM) Task Group report TG-43U1 absorbed dose to water formalism, which neglects human tissue densities, material compositions, body interfaces, body shape and dose perturbations from applicators. The significance of these effects has been described by the AAPM Task Group report TG-186 in published guidelines towards the implementation of Treatment Planning Systems (TPS) which can take into account the above mentioned complexities. This departure from the water kernel based dose calculation approach requires relevant scientific efforts in several fields. This thesis aims to improve brachytherapy treatment planning accuracy following TG-186 recommendations and going beyond it. A software has been developed to integrate clinical treatment plans with Monte Carlo (MC) simulations; high fidelity CAD-Mesh geometry was employed to improve brachytherapy applicators modelling; different dose report quantities, Dw,m (dose to water in medium) and Dm,m (dose to medium in medium), were obtained for a head and neck case using small cavity theory (SCT) and large cavity theory (LCT); the dose component due to the source moving within the patient was evaluated for gynecological and prostate clinical cases using speed profiles from the literature. Moreover, source speed measurements were performed using a high speed camera. Dose calculations using MC showed overdosing around 5% within the target volume for a gynecological case comparing results obtained including tissue, air and applicator effects against a homogeneous water phantom. On the other hand, the same comparison showed underdosing around 5% when including tissue and air composition for an interstitial arm case. A hollow cylinder applicator was responsible for the overdosing observed for the gynecological case highlighting the importance of accurate applicator modelling. The evaluated CAD-Mesh applicators models included a Fletcher- Williamson shielded applicator and a deformable balloon used for accelerated partial breast irradiation. Results obtained were equivalent to ones obtained with conventional constructive solid geometry and may be convenient for complex applicators and/or when manufacturer CAD models are available. Differences between Dm,m and Dw,m (SCT or LCT) are up to 14% for bone in a evaluated head and neck case. The approach (SCT or LCT) leads to differences up to 28% for bone and 36% for teeth. Differences can also be significant due to the source movement since some speed profiles from literature show low source speeds or uniform accelerated movements. Considering the worst case scenario and without include any dwell time correction, the transit dose can reach 3% of the prescribed dose in a gynecological case with 4 catheters and up to 11.1% when comparing the average prostate dose for a case with 16 catheters. The transit dose for a high speed (measured with a video camera) source is not uniformly distributed leading to over and underdosing, which is within 1.4% for commonly prescribed doses (310 Gy). The main subjects evaluated in this thesis are relevant for brachytherapy treatment planning and can improve treatment accuracy. Many of the issues described in here can be assessed with the software, coupled with a MC code, developed in this work.
|
3 |
Estudos dosimétricos dos efeitos da heterogeneidade dos tecidos em braquiterapia utilizando o método Monte Carlo / Dosimetric studies of the effects of tissue heterogeneity on brachytherapy using the Monte Carlo methodAntunes, Paula Cristina Guimarães 08 February 2019 (has links)
Os procedimentos braquiterápicos atuais seguem as diretrizes apresentadas no protocolo da AAPM TG - 43, introduzido em 1995, que define a metodologia de cálculo de dose ao redor de fontes encapsuladas. Este protocolo, dentre outras considerações, adota a água como meio dosimétrico padrão e desconsidera a composição dos tecidos, densidades e dimensões do paciente nas estimativas de dose absorvida. Com o objetivo de realizar os cálculos de dose em condições mais próximas à realidade, a AAPM publicou em 2012 o TG-186, que introduz os algoritmos de cálculos de dose baseados em modelos na braquiterapia (MBDCA- model-based dose calculation algorithm). Estes algoritmos são capazes de considerar as complexidades descritas acima, além de permitirem estimativas de dose diretamente nos tecidos biológicos. Apesar deste advento, ainda há controvérsia sobre a melhor forma de se reportar a dose absorvida, com pontos favoráveis tanto para estimativas de dose na água, quanto nos tecidos. Esta tese se insere dentro deste contexto, buscando a correlação entre todo o conhecimento previamente adquirido baseado em água com os modernos algoritmos de cálculo de dose. A relação entre a dose na água e no meio é realizada através da teoria da cavidade, que assume que a fluência dos fótons na água e no meio é idêntica. Parte dos objetivos do presente trabalho foi avaliar a fluência energética de fótons em diferentes meios irradiados com fontes braquiterápicas de energias baixas (<50,0 keV), propondo uma forma eficiente de correlacionar a dose na água e no meio em situações nas quais a fluência dos fótons é relevante. Avaliou-se a dose absorvida na água e em diferentes tecidos humanos, para quantificar fatores de conversão entre as estimativas de dose, simulados por Monte Carlo. Para validar tais fatores foi proposta uma metodologia experimental com o uso de um objeto simulador, desenvolvido especificamente para a realização deste trabalho e com capacidade de medir os efeitos da heterogeneidade do meio utilizando doses absorvidas em dosímetros termoluminescentes. As correções baseadas na fluência energética obtidas neste estudo, quando necessárias, são capazes de correlacionar a dose absorvida no tecido e na água com uma precisão melhor do que 0,5 % nos casos mais críticos (ex. osso). Os fatores de conversão calculados mostraram que a dose absorvida na água subestima a dose absorvida no osso em até 80 %, mas superestima a dose no tecido adiposo em aproximadamente 75 %, ressaltando a necessidade de se considerar a composição e a densidade do meio nas estimativas de dose. Os resultados experimentais permitiram validar os fatores de conversão de dose simulados com diferenças máximas de 8,5 %, entre os valores experimentais e simulados. Todos os resultados obtidos comprovaram que a estimativa da dose absorvida em procedimentos braquiterápicos com baixas energias diferem significativamente quando realizadas na água e nos tecidos biológicos, evidenciando a necessidade do uso de algoritmos que considerem a heterogeneidade do meio. Tais resultados também enfatizaram a necessidade de se considerar com precisão a composição do corpo, uma vez que variações nas composições médias dos tecidos podem afetar as estimativas dosimétricas e aumentar as incertezas dos resultados. / Brachytherapy treatments are commonly performed using the American Association of Physicists in Medicine (AAPM) Task Group report TG-43, introduced in 1995, which defines the formalism for the calculation of absorbed dose to water, and neglects human tissue densities, material compositions, body interfaces, body shape and dose perturbations from applicators. In order to perform dose calculations in conditions closer to reality, the AAPM published in 2012 the TG-186, which introduces the model-based dose calculation algorithm (MBDCA) in brachytherapy. These algorithms are able to consider the complexities described above, in addition, it allows dose estimates directly into biological tissues. Despite the advent, the best way to report the absorbed dose is still a matter of debate, with favourable points for both water and tissue absorbed dose estimates. The present thesis is inserted within this context, searching for the correlation between all previously acquired knowledge based in absorbed dose to water with the absorbed dose calculated using modern MBDCA. The correlation between the doses in water and the doses in tissue is performed through the cavity theory, which generally assumes that the fluence of the photons in water and in tissue are identical. Part of the purpose of the present work was to evaluate the energy-fluence of photons in different medium irradiated with low energy brachytherapy sources (<50,0 keV), proposing an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy in situations in which the fluence of the photons is relevant. In addition to this objective, the dose absorbed in water and in different human tissues was evaluated to quantify conversion factors between these dose estimates, simulated by Monte Carlo. To validate such factors, an experimental methodology was proposed in a phantom with the capacity to quantify the effects of the heterogeneity of the medium measuring absorbed doses in thermoluminescent dosimeters. The energy-fluence based corrections given in this work, when necessary, are able to correlate the absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5 % in the most critical cases (e.g.: bone tissue). The calculated conversion factors showed that the absorbed dose to water underestimates the absorbed dose to bone by up to 80 % but overestimates the dose in adipose tissue by approximately 75 %, emphasizing the need to consider the composition and the density of tissue in the dose estimates. The experimental results allowed validating the simulated conversion factors with maximum differences of 8.5 % between the experimental and simulated dose values. All the results obtained showed that the estimation of the dose absorbed in low energy brachytherapy procedures differ significantly when performed in water and in biological tissues, evidencing the necessity of using MBDCA. These results also emphasized the need to accurately consider tissue composition, since the smallest variations in tissue compositions may affect dosimetric estimates and increase uncertainties of the results.
|
Page generated in 0.0237 seconds