1 |
Modelización de elementos lineales de hormigón armado incluyendo el efecto del esfuerzo cortanteNavarro Gregori, Juan 12 March 2010 (has links)
La gran mayoría de estructuras de hormigón armado compuestas por elementos lineales desarrolla esfuerzos combinados que incluyen el esfuerzo cortante. Además, algunos colapsos estructurales han sido debidos a situaciones de acoplamiento de esfuerzos que han llevado a la estructura a un fallo frágil a cortante. Por ello, resulta necesario disponer de modelos de análisis de elementos lineales que incluyan al efecto del esfuerzo cortante correctamente.
El análisis y el dimensionamiento de las estructuras de hormigón armado se ha realizado tradicionalmente tratando por separado los esfuerzos aplicasdos. En la actualidad, existen pocos elementos unidimensionales de análisis no lineal que capten adecuadamente el efecto queproduce el esfuerzo cortante. La fisura diagonal, la transmisión del cortante a través de la armadura transversal o la zona no fisurada, y el fallo final del elemento, son aspectos que un modelos de cortante debe incluir eficazmente.
El objetivo de esta tesis doctoral es el de modelizar el comportamiento resistente de elementos lineales de hormigón armado incluyendo el efecto del esfuerzo cortante. Se presenta un modelo teórico que considera simultáneamente los esfuerzos axil, flector y cortante. Se propone una nueva hipótesis cinemática para el comportamiento seccional que permite estudiar el efecto de acoplamiento entre las tensiones normales y tangenciales. Esta nueva hipótesis recibe el nombre de hipótesis cinemática para el comportamiento seccional que permite estudiar el efecto de acoplamiento entre las tensiones normales y tanagenciales. Esta nueva hipótesis de correción de cortante por ser el término dependiente del esfuerzo cortante el que se corrige.
La hipótesis de corrección de cortante incluye una función de interpolación general, que configura el denominado modelo general de corrección de cortante. Además, se plantea otra función de interpolación más sencilla. / Navarro Gregori, J. (2010). Modelización de elementos lineales de hormigón armado incluyendo el efecto del esfuerzo cortante [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/7342
|
2 |
Behaviour of Shear-critical Reinforced Concrete Beams Retrofitted with Externally Applied Fibre-reinforced PolymersColalillo, Michael Anthony 11 December 2012 (has links)
Ageing infrastructure that is shear deficient and may be at risk of brittle collapse, particularly in seismically active regions, can be economically strengthened using externally bonded fibre-reinforced polymers (FRP). Although many studies have been conducted on small-scale specimens subject to monotonic loading, little experimental data exists for large-scale specimens and those tested under reversed cyclic loading to simulate a seismic event. An experimental study of large-scale (400 mm x 650 mm) beam specimens strengthened in shear with FRP was conducted to examine the effects of reversed cyclic loading and to quantify material shear strength contributions. Testing showed that FRP retrofits were highly effective at improving shear performance and were not adversely affected by reversed cyclic loading prior to the occurrence of flexural yielding. The shear resistance attributed to concrete was found to remain relatively consistent with reversed cyclic loading prior to flexural yielding, after which point concrete strength decay was apparent. The loss of concrete shear resistance directly influenced the rate of FRP straining and the achievable ductility. An analytical model using the Modified Compression Field Theory (MCFT) was developed for externally bonded FRP reinforcement to describe the experimental behaviour and to evaluate the accuracy of current FRP design methods. Failures were accurately modelled when appropriate FRP strain limits were used for the ultimate strength and for the stress transfer capacity across the shear crack. Proposed FRP strain limits were developed considering the strain distribution along the crack plane. In addition, improved strain limits incorporate the effect of rupture failure due to stress concentrations in the FRP wrapped around the beam corners. The proposed FRP formulations offer improved accuracy over the current FRP design methods (CSA S6-06 and ACI 440.2R-08), which suggest a broadly applied maximum strain limit of 0.004 mm/mm, which was determined to be overly conservative for FRP rupture failures.
|
3 |
Behaviour of Shear-critical Reinforced Concrete Beams Retrofitted with Externally Applied Fibre-reinforced PolymersColalillo, Michael Anthony 11 December 2012 (has links)
Ageing infrastructure that is shear deficient and may be at risk of brittle collapse, particularly in seismically active regions, can be economically strengthened using externally bonded fibre-reinforced polymers (FRP). Although many studies have been conducted on small-scale specimens subject to monotonic loading, little experimental data exists for large-scale specimens and those tested under reversed cyclic loading to simulate a seismic event. An experimental study of large-scale (400 mm x 650 mm) beam specimens strengthened in shear with FRP was conducted to examine the effects of reversed cyclic loading and to quantify material shear strength contributions. Testing showed that FRP retrofits were highly effective at improving shear performance and were not adversely affected by reversed cyclic loading prior to the occurrence of flexural yielding. The shear resistance attributed to concrete was found to remain relatively consistent with reversed cyclic loading prior to flexural yielding, after which point concrete strength decay was apparent. The loss of concrete shear resistance directly influenced the rate of FRP straining and the achievable ductility. An analytical model using the Modified Compression Field Theory (MCFT) was developed for externally bonded FRP reinforcement to describe the experimental behaviour and to evaluate the accuracy of current FRP design methods. Failures were accurately modelled when appropriate FRP strain limits were used for the ultimate strength and for the stress transfer capacity across the shear crack. Proposed FRP strain limits were developed considering the strain distribution along the crack plane. In addition, improved strain limits incorporate the effect of rupture failure due to stress concentrations in the FRP wrapped around the beam corners. The proposed FRP formulations offer improved accuracy over the current FRP design methods (CSA S6-06 and ACI 440.2R-08), which suggest a broadly applied maximum strain limit of 0.004 mm/mm, which was determined to be overly conservative for FRP rupture failures.
|
Page generated in 0.0238 seconds