Spelling suggestions: "subject:"MDM2 353 allosteric"" "subject:"MDM2 353 allosterically""
1 |
Allosteric regulation of MDM2 proteinWawrzynów, Bartosz January 2010 (has links)
The diverse functions of the MDM2 oncoprotein in growth control and tumourigenesis are managed through coordinated regulation of its discrete domains induced by both extrinsic and intrinsic stimuli. A picture of MDM2 is immerging where structurally discrete but interdependent functional domains are linked through changes in conformation. However compelling insights into how this process is carried out have been hindered by inadequate information on the structure and conformation of the full-length protein. The data presented indicates that the C-terminal RING domain of MDM2, primarily responsible of the E3 ubiquitin ligase activity of the protein, has other intriguing functions. The binding of ATP within the RING domain, triggers conformational changes of MDM2 and its main interaction partner – p53. This in effect promotes efficient binding of the p53 tumour suppressor to specific DNA promoter sequences. Moreover, results presented in this thesis demonstrate a novel role for the RING domain of MDM2 in determining the conformation and activity of its N-terminal hydrophobic cleft, the key target of anticancer drugs designed to activate the function of p53 tumour suppressor protein. Specific modulations within the RING domain, affecting Zinc coordination are synonymous with increased binding affinity of the hydrophobic pocket to the transactivation domain of p53 resulting in a gain of MDM2 transrepressor function thus leading to a decrease in p53-dependant gene expression. ThermoFluor measurements and size exclusion chromatography show that changes in the RING motif lack an effect on the overall integrity of the MDM2 protein. The intrinsic fluorescence measurements manifest that these changes generate long range conformational transitions that are transmitted through the core/central acidic domain of MDM2 resulting in allosteric regulation of the N-terminal hydrophobic pocket. Such RING generated conformational changes result in the relaxation of the hydrophobic pocket. Additionally, it is shown that the cooperation between the RING and the hydrophobic cleft in MDM2 has implications in the efficiency of binding of anticancer drugs such as Nutlin by MDM2. Cooperation between the RING and hydrophobic domain of MDM2 to regulate function demonstrates an allosteric relationship and highlights the need to study MDM2 in a native conformation. In essence the presented data demonstrates that the complex relationship between different domains of MDM2 can impact on the efficacy of anticancer drugs directed towards its hydrophobic pocket.
|
Page generated in 0.0895 seconds