• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um modelo unificado para planejamento sob incerteza / An unified model for planning under uncertainty

Trevizan, Felipe Werndl 31 May 2006 (has links)
Dois modelos principais de planejamento em inteligência artificial são os usados, respectivamente, em planejamento probabilístico (MDPs e suas generalizações) e em planejamento não-determinístico (baseado em model checking). Nessa dissertação será: (1) exibido que planejamento probabilístico e não-determinístico são extremos de um rico contínuo de problemas capaz de lidar simultaneamente com risco e incerteza (Knightiana); (2) obtido um modelo para unificar esses dois tipos de problemas usando MDPs imprecisos; (3) derivado uma versão simplificada do princípio ótimo de Bellman para esse novo modelo; (4) exibido como adaptar e analisar algoritmos do estado-da-arte, como (L)RTDP e LDFS, nesse modelo unificado. Também será discutido exemplos e relações entre modelos já propostos para planejamento sob incerteza e o modelo proposto. / Two noteworthy models of planning in AI are probabilistic planning (based on MDPs and its generalizations) and nondeterministic planning (mainly based on model checking). In this dissertation we: (1) show that probabilistic and nondeterministic planning are extremes of a rich continuum of problems that deal simultaneously with risk and (Knightian) uncertainty; (2) obtain a unifying model for these problems using imprecise MDPs; (3) derive a simplified Bellman\'s principle of optimality for our model; and (4) show how to adapt and analyze state-of-art algorithms such as (L)RTDP and LDFS in this unifying setup. We discuss examples and connections to various proposals for planning under (general) uncertainty.
2

Um modelo unificado para planejamento sob incerteza / An unified model for planning under uncertainty

Felipe Werndl Trevizan 31 May 2006 (has links)
Dois modelos principais de planejamento em inteligência artificial são os usados, respectivamente, em planejamento probabilístico (MDPs e suas generalizações) e em planejamento não-determinístico (baseado em model checking). Nessa dissertação será: (1) exibido que planejamento probabilístico e não-determinístico são extremos de um rico contínuo de problemas capaz de lidar simultaneamente com risco e incerteza (Knightiana); (2) obtido um modelo para unificar esses dois tipos de problemas usando MDPs imprecisos; (3) derivado uma versão simplificada do princípio ótimo de Bellman para esse novo modelo; (4) exibido como adaptar e analisar algoritmos do estado-da-arte, como (L)RTDP e LDFS, nesse modelo unificado. Também será discutido exemplos e relações entre modelos já propostos para planejamento sob incerteza e o modelo proposto. / Two noteworthy models of planning in AI are probabilistic planning (based on MDPs and its generalizations) and nondeterministic planning (mainly based on model checking). In this dissertation we: (1) show that probabilistic and nondeterministic planning are extremes of a rich continuum of problems that deal simultaneously with risk and (Knightian) uncertainty; (2) obtain a unifying model for these problems using imprecise MDPs; (3) derive a simplified Bellman\'s principle of optimality for our model; and (4) show how to adapt and analyze state-of-art algorithms such as (L)RTDP and LDFS in this unifying setup. We discuss examples and connections to various proposals for planning under (general) uncertainty.

Page generated in 0.0132 seconds