1 |
Optimisation of hybrid MED-TVC and double reverse osmosis processes for producing different grades of water in a smart cityAl-hotmani, Omer M.A., Al-Obaidi, Mudhar A.A.R., John, Yakubu M., Patel, Rajnikant, Mujtaba, Iqbal 07 April 2022 (has links)
Yes / The integration of two or more processes in a hybrid system is one of the most desirable options to provide flexibility, interoperability and data sharing between the connected processes. Various examples of hybrid systems have been developed with coherent seawater desalination systems such as the combination of thermal and membrane technologies. This paper focuses on the simulation and optimisation of an integrated (hybrid) system of multi effect distillation and double Reverse Osmosis (RO) processes to produce different grades of water needed in a smart city from seawater resources. The optimisation-based model investigates five scenarios to obtain the highest productivity of drinking water, irrigation water, water for livestock and power plant water, whilst constraining the product water salinity to be within the required standards and with lowest specific energy consumption. For this purpose, multi objective optimisation problem was formulated using the gPROMS (general Process Modelling System) software. The results confirm the superiority of the developed hybrid system to sustain different grades of water in a smart city.
|
2 |
A parametric simulation on the effect of the rejected brine temperature on the performance of multieffect distillation with thermal vapour compression desalination process and its environmental impactsBuabbas, Saleh K., Al-Obaidi, Mudhar A.A.R., Mujtaba, Iqbal 31 March 2022 (has links)
Yes / Multieffect distillation with thermal vapour compression (MED–TVC) is one of the most attractive thermal desalination technologies for the production of freshwater. Several mathematical models were presented in the open literature to analyse the steady-state performance of such process. However, these models have several limitations and assumptions. Therefore, there remains the challenge of having a reliable model to accurately predict the performance of the MED process. Thus, this research attempts to resolve this challenge by rectifying the shortcomings of the models found in the literature and create a new one. The robustness of the developed model is evaluated against the actual data of Umm Al-Nar commercial plant situated in UAE. In seawater desalinisation, a large amount of high-salinity stream (brine) is rejected back into the sea. This paper investigates the influence of the rejected (exit) brine temperature on the system performance parameters of MED–TVC process. Specifically, these parameters are considered as total heat consumption, gain output ratio, freshwater production, heat transfer area and performance ratio. Also, the particular parameters of TVC section of the entrainment ratio, compression ratio and expansion ratio are also addressed. Moreover, a critical evaluation of the influence of the rejected brine temperature on the seawater is also embedded.
|
Page generated in 0.0226 seconds