• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A unified mapreduce programming interface for multi-core and distributed architectures / Uma interface de programa??o mapreduce unificada para arquiteturas multi-core e distribu?da

Adornes, Daniel Couto 31 March 2015 (has links)
Submitted by Setor de Tratamento da Informa??o - BC/PUCRS (tede2@pucrs.br) on 2016-06-22T19:44:58Z No. of bitstreams: 1 DIS_DANIEL_COUTO_ADORNES_COMPLETO.pdf: 1894086 bytes, checksum: f87c59fa92f43ed62efaafd9c724ed8d (MD5) / Made available in DSpace on 2016-06-22T19:44:58Z (GMT). No. of bitstreams: 1 DIS_DANIEL_COUTO_ADORNES_COMPLETO.pdf: 1894086 bytes, checksum: f87c59fa92f43ed62efaafd9c724ed8d (MD5) Previous issue date: 2015-03-31 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / In order to improve performance, simplicity and scalability of large datasets processing, Google proposed the MapReduce parallel pattern. This pattern has been implemented in several ways for different architectural levels, achieving significant results for high performance computing. However, developing optimized code with those solutions requires specialized knowledge in each framework?s interface and programming language. Recently, the DSL-POPP was proposed as a framework with a high-level language for patternsoriented parallel programming, aimed at abstracting complexities of parallel and distributed code. Inspired on DSL-POPP, this work proposes the implementation of a unified MapReduce programming interface with rules for code transformation to optimized solutions for shared-memory multi-core and distributed architectures. The evaluation demonstrates that the proposed interface is able to avoid performance losses, while also achieving a code and a development cost reduction from 41.84% to 96.48%. Moreover, the construction of the code generator, the compatibility with other MapReduce solutions and the extension of DSL-POPP with the MapReduce pattern are proposed as future work. / Visando melhoria de performance, simplicidade e escalabilidade no processamento de dados amplos, o Google prop?s o padr?o paralelo MapReduce. Este padr?o tem sido implementado de variadas formas para diferentes n?veis de arquitetura, alcan?ando resultados significativos com respeito a computa??o de alto desempenho. No entanto, desenvolver c?digo otimizado com tais solu??es requer conhecimento especializado na interface e na linguagem de programa??o de cada solu??o. Recentemente, a DSL-POPP foi proposta como uma solu??o de linguagem de programa??o de alto n?vel para programa??o paralela orientada a padr?es, visando abstrair as complexidades envolvidas em programa??o paralela e distribu?da. Inspirado na DSL-POPP, este trabalho prop?e a implementa??o de uma interface unificada de programa??o MapReduce com regras para transforma??o de c?digo para solu??es otimizadas para arquiteturas multi-core de mem?ria compartilhada e distribu?da. A avalia??o demonstra que a interface proposta ? capaz de evitar perdas de performance, enquanto alcan?a uma redu??o de c?digo e esfor?o de programa??o de 41,84% a 96,48%. Ademais, a constru??o do gerador de c?digo, a compatibilidade com outras solu??es MapReduce e a extens?o da DSL-POPP com o padr?o MapReduce s?o propostas para trabalhos futuros.

Page generated in 0.0339 seconds